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Research Summary

My research interests lie at the intersection of natural language processing (NLP) and Systems, with
practical applications in the realm of computational social science. My thesis research focuses on the design of
Domain Faithful Deep Learning Systems, that translate expert-understandable domain knowledge and
constraints to be faithfully incorporated into learning deep learning models. In high-stakes domains like health,
socio-economic inference and content moderation, a fundamental roadblock for developing deep learning systems
is that machine learning models’ predictions diverge from established causal domain knowledge when deployed
in the real world and fail to faithfully incorporate domain specific structure in counterfactual data distributions.
To overcome these limitations, I have developed domain faithful deep learning systems through methodological
contributions in ML model design [14], constrained optimization [3, 10, 11, 12], data augmentation [1, 2] and
feature selection [7, 8], for real world applications.

My research vision is to deploy these ML systems for consequential socio-technical and natural language
understanding tasks by collaborating with domain experts and addressing critical research questions such as
“What data distributions do domain practitioners care about?”, “How to faithfully convert domain knowledge
into model constraints for better generalization?” and finally “How to evaluate whether the ML models we learn
are grounded in the domain knowledge and in what ways do they deviate?”. My larger goal is to contribute
towards positive socio-economic development, and hence I have tackled real-world societal problems in
computational social science and NLP, and addressed the fundamental research questions underlying these
problems as well as translate these solutions into practice for societal impact. My core research philosophy is to
strongly emphasize “end-to-end system design”, where algorithmic contributions are evaluated and deployed in
the real world with the aim to adopt them at scale. For instance, the causal-aware and robust prediction models
I have developed in collaboration with the World Bank and Google, have shown that relying on data alone can
lead to incorporating spurious correlations, and low accuracy in data sparse or counterfactual scenarios, and
hence, domain-specific structure is necessary for building robust predictive models.

Broadly, my work has had demonstrable research impact in addressing the key problems of making deep
learning systems (a) more causally faithful and (b) robust under heterogeneous counterfactual scenarios.

o Causally Faithful Predictive Models: Causal knowledge is often expressed in various forms - graphical
causal models, semantic causal roles in sentences, theoretical model parameters. For example, causality
based question answering lies at the core of customer support tools like chatbots. Prior ML models fail to
capture the directed nature of causality, for example rain causes traffic delay, and not vice versa. By learning
asymmetric causal embeddings faithful to causal graphs [5], we have improved accuracy on Yahoo! Answers
by 21% in this paper at ACL 21, a premiere NLP conference. Causal knowledge is also useful in data sparse
conditions where interventions are often infeasible. For example, the task of forecasting famine is critical
for the mobilization of aid to millions of people, but hard to solve due to data scarcity in fragile and poorer
countries. By building a news-based causal-aware forecasting framework that extracts causal features from
11.2 million news articles across 2 decades in 15 fragile countries [4], we have improved forecasting accuracy
by 32% compared to state-of-the-art predictive models. This work is accepted at IC2S2 ’21, the premiere
computational social science conference, and is under revision at Science Advances journal. The tool will be
used by the World Bank Data Science group for aid allocation and has been the basis of a socio-economic
inference start-up Velai, Inc. Finally, in the domain of corporate privacy compliance, policies are legally
prescriptive, but not directly enforceable in computer systems. By incorporating the theory of contextual
integrity through post-processing mappings [6, 9], we have improved the accuracy of BERT-based deep
learning models by 6% to extract privacy parameters for SQL-based enforcement in this paper at WWW’ 19.

o Heterogeneous Contextual Robustness: Trustworthy ML models in health recommendations need to be
robust to medical concepts over unseen patient data, while traditional ML models focus only on optimizing
accuracy over the observed but limited test data. By incorporating trust through doctor specified mapping
rules between diagnoses and medications through data augmentation [1], we have improved accuracy of
state-of-the-art end-to-end neural models by 12% in this publication at WSDM 21, the premiere data mining
conference. Automated detection of online toxic comments improves the quality of interaction in social media.
However, the variations in the context of comments make it hard to protect specific demographic groups
from disparate impact. By explicitly modeling such nuances through counterfactual data augmentation,
we improved the accuracy of detecting toxicity by 6% [2, 13]. Through this publication at EMNLP 21, a
premiere NLP conference, I have fostered deep engagements with Google’s Responsible ML team.



Research Contributions

My dissertation research has focused on applying domain faithful deep learning to build causally faithful
and heterogeneously robust predictive models in the domains of socio-economic inference, causal-aware deep
learning, privacy, health, and toxicity detection. Each of these domains pose unique challenges on how to
incorporate structure and the diverse techniques required to execute them. Below, I discuss how by developing
domain faithful deep learning systems, I have improved outcomes in each one of them.

Causally Faithful Predictive Models

Socio-Economic Inference: In socio-economic inference, the motivation is to have a broader posi-
tive societal impact using data-driven machine learning tools. Many applications which relied purely on
data have faced issues as they did not incorporate domain-specific causal structure. For example, in the Flu
prediction model based on Google Search Trends, it was shown that the model deviates over-time as compared
to a one that incorporates signals derived from the Center for Disease Control (CDC). In the problem of
predicting food insecurity [4] task, we overcome the challenge of data sparsity in fragile states which are often
encumbered with infrastructural and conflict-based issues that makes the task of data collection harder. As
traditional indicators like rainfall, vegetation index, etc are often delayed, we aim to use the news streams
[7] published by reputed sources like BBC, Reuters, AP, etc. to automatically extract and construct causally
grounded indicators. Our contributions extend beyond the methodologies and have implications on the ethical
and operational trade-offs a domain practitioner needs to make in a socio-technical system. In the famine
prediction task, by extracting causes from scientific literature using Semantic Frame Parsing and then con-
structing time-series indicators by expanding to tokens with low Word-Mover distances, we are able to reduce
the food insecurity forecasting errors by 32%. Additionally, alignment of models to domain expertise provides
an additional incentive to practitioners - counterfactual reasoning: Not all episodes of famine are the same,
and our methodology allows us to model what is the implication of each of the causes in improving the pre-
diction accuracy at a fine-grained level of districts in 15 of the most fragile countries in the world over two decades.

Causal Graphs for Question Answering: Question Answering tasks power technologies like chatbots
for customer support in businesses. Recent advances in machine learning for processing natural language
text have broadly relied on large neural language models like Transformers which capture the relationships
between the word tokens in long sequences. The fine-tuning of these language models for multiple tasks
have demonstrated state-of-the-art performance on benchmarks like GLUE. However, these fine-tuned models
perform poorly on counterfactual sentences or inconsistently on downstream tasks which have specific structure
like graphical causal models or domain-specific theory. In the causal-QA dataset [5], questions of the form
“What causes X?” are posed, where X can be a disease, phenomenon and a real-world event. Neural Network
models have been modified to predict causal links, but lack the consistency required, i.e undirected paths
in a graph are still considered causal, whereas causal graphs are strictly directional. On the other hand,
traditional Information Retrieval (IR) techniques that mine such causal information from knowledge graphs
are limited in their generalizability to new and related terms mentioned in questions, i.e “flood” and “deluge”
may have similar causes, but if “deluge” is not in the graph, then we have no way of estimating its cause. To
overcome the limitations of using either an end-to-end model or domain knowledge as-is in its limited scale,
we provide a way to incorporate the constraints imposed by the domain-specific structure - causal graphs
in this case into BERT-like transformer based models. We demonstrate that when proximity between the
embeddings of two nodes is modeled using a pseudo-quasi-metric, we are able to capture the directedness of
causal graphs. Specifically, we measure three properties of faithfulness namely the uniformity of the embeddings,
the correlation between distances of any two random nodes in the graph, and link prediction accuracy. In
each of these graph-specific indicators, by imposing a regularization loss which penalizes inconsistencies in
how the embeddings satisfy these two properties over two large causal graphs with 800K nodes, we obtain a
fine-tuned embedding that not only achieves causal faithfulness better, but also improves the area under the
Precision-Recall curve over the Yahoo! Answers causal-QA dataset by 21%.

Privacy-policy Faithful Information Systems: Recently, since the adoption of GDPR, firms have
invested in data compliance systems and privacy policy enforcement. In this work, we aim to automate the
enforcement by relying on established theories of privacy like Contextual Integrity [6, 9], which dictate that 5
parameters of an information flow need to be present in privacy norms of policies. This theory imposes a specific
structure of the legal language containing 5 parameters: sender, receiver, attribute, subject and transmission



principle in each sentence of any binding privacy policy. The extraction of these domain-specific parameters
from unstructured natural language text is important to reason about the soundness and completeness of any
privacy policy. Fine-tuned end-to-end neural models like BERT-based Semantic Role Labeling and Dependency
Parsers significantly performed poorly by 6% as compared to a combined approach where the output parameters
of these models were re-mapped post-hoc based on the theory of Contextual Integrity. These examples show
that incorporating domain-specific structure is important, but also how we do it matters, when we work with a
diverse set of application domains.

Heterogeneous Contextual Robustness

Medical Concordance in Health Recommenders: Recent advances in applying Al for healthcare
have often relied purely on data, but fail categorically when patients with different characteristics than the
ones present in training data are presented. Specifically, in the medication recommendation task [1], learning
end-to-end neural models based on historical electronic health records might prove to be accurate, but may
not inculcate trust in doctors, unless the ontologies of medicine that are used as standards by trusted medical
associations are incorporated. In the medication recommendation task, since all possible diagnoses that may
be relevant might not be present in the training data, we improve the neural network model - G-BERT’s
domain-specific concordance based on expert-specified medical ontologies like medication and diagnostic code
hierarchies and the mapping rules between them. By incorporating causal structure into machine learning
models through categorical counterfactual data augmentation and regularization, we guard against predictions
that violate the domain knowledge over categories and improve the categorical robustness of prediction models
by 1.2z and accuracy by 12% on the MIMIC-IIT dataset, as we rely less on spurious correlations in the data.

Additionally, domain practitioners have often minimal guidance on the choice of parameters that Al tools
in healthcare operate over. For example, in the angiographic disease status prediction task [3, 10], the variability
of diagnostic features in different demographic groups is well studied. Here, practitioners need to carefully
evaluate the trade-offs between the per-group accuracy across demographic groups, when an end-to-end jointly
trained model is used. When we analyze the performance of ML models on specific demographic groups, we
outline the choice of parameters of fairness and accuracy trade-offs that practitioners have based on Pareto
Efficiency. For example, how accurate an ML model should be over patients with darker skin tone than lighter
skin tone in a heart disease status prediction model is a choice that cannot be made blindly, but with careful
consideration of the medical diagnostic equipment’s characteristics and the Pareto optimality of the model’s
performance across demographic groups [3,10]. Through the principle of Pareto Efficiency, we can potentially
improve group-level accuracies by 9.6% on UCI datasets. Acting blindly based on the neural model’s decisions
in high-stakes scenarios might be sub-optimal and using our methodology, experts can now justify their choice,
in case they were to be contested [3, 4].

Counterfactually Robust Toxicity Detection: In the domain of toxicity detection in online so-
cial media comments, social-science experts have long advocated for incorporating how specific demographic
groups are susceptible to specific types of toxic comments. It is important to model secondary attributes that
are relevant to the toxicity of a sentence explicitly when we aim to be fair based on demographic groups. In this
scenario, one needs to be aware of group-specific language, idioms, quirks, and background history to ascertain
the toxicity of a comment. But this nuance was never captured explicitly in BERT-based neural network models.
At Google, I incorporated this domain knowledge through counterfactual data augmentation [2,13] that model
secondary variables and was able to improve the ability to detect toxic comments for all demographic groups,
specifically black women, who were susceptible to more directed toxic comments. By augmenting examples of
directed toxicity in a weighted manner to demographic groups that are more exposed to such comments, we
are able to classify toxicity better on all demographic groups. Without this nuance of how toxic comments
vary, and just optimizing for overall absolute error, the toxicity detection model would disparately perform
poorer on specific demographic groups unintentionally. Through intervention on secondary attributes through
counterfactual data augmentation, we not only improved the model’s understanding of what constitutes toxicity,
but also improved the accuracy on all demographic groups by 7%. This application clearly demonstrates that
as a text classification model is scaled to be applicable to all demographic groups in a society, the secondary
effects of covariates and how they impact the performance of a ML system depends on domain knowledge, and
needs carefully expert supervision. Such business decisions and design choices have the capacity to influence
the product experience for billions of users.



Future Research Agenda

My long term goal is to develop a framework where domain experts and ML practitioners can
collaborate on mutually beneficial abstractions for fairness [16], concordance, causal models, etc., that is
interpretable for the practitioners and operable for the ML researchers. Such Domain Faithful Deep Learning
systems will be flexible to various types of domain knowledge including but not limited to categorical mappings,
logical formulations over concepts, algebraic constraints over groups of data. I envision domain experts to define
concepts over the observed dataset, with specifications of how those concepts are related with each other. In
parallel, these concepts will be automatically incorporated into a deep learning formulation after translating
into regularization, generative data augmentation and/or adversarial robustness constraints. Further, since
data distributions on which the ML models are trained have significant consequences on safety guarantees
one can hope to achieve, we will allow for program specifications to define the distributions of data including
counterfactuals and support for active learning examples. Since we expect that domain experts to be not
familiar with these techniques, the framework will programmatically perform this mapping based on the type of
domain knowledge expressed.

With this framework, as part of future work, I will be exploring research to build Domain Faithful Deep
Learning Systems with applications in the realm of healthcare, sustainability, responsible computational social
science and privacy by addressing the following core challenges.

o Domain specification language: One of the hurdles to enable such systems is the lack of a common
specification language for practitioners and researchers to collaborate. For example, in the medication
recommendation task, we are working towards automating the process of data augmentation, regularization
[1], into a specification language for medical domain experts. This not only improves the transparency of ML
design, but allows researchers more flexibility in choosing among techniques applicable for the health domain.

o Domain structure for global properties: Incorporating global properties over large groups of data
instances into ML models needs to be an integral part of design choices in trustworthy socio-technical systems.
For example, in the domain of pollution monitoring [14, 15], we are working towards incorporating the
knowledge of pollution scientists in building fine-grained urban sensing that have the ability to forecast air
quality in the next 2 hours in your neighborhood.

o Scientific Hypotheses Discovery: Further, in many domains where domain knowledge is still in its nascent
phase, my current research has been used to analyze the performance of the ML models while keeping domain
specific constraints in mind, which can pave the way for generating hypotheses for scientific discovery. For
example, to measure and combat climate change, we are working with atmospheric and ocean scientists to
model the Earth’s atmospheric pressure by parameterizing gravity waves and it’s impact on the atmospheric
pressure changes through message passing graph neural networks. Using ML models for generating these
hypotheses can further improve the pace of scientific experiments.

o Translating natural language to logic: Similarly, domains which have complex unstructured data can
benefit from using ML to interpret its structure to be checked by domain experts. For example, in the domain
of privacy [9], we are working on automatically translating complex language to enforceable logic that can be
directly deployed in information retrieval systems.

o Ethical translation of domain knowledge: How domain expertise gets translated into statistical con-
straints and concepts can have ethical implications. The questions such as what data distribution and for what
purpose is the model trained intended for, are closely related and is precisely the type of cross-disciplinary
analysis we need to engage domain experts with, for building responsible data-driven systems. For
example, in the coronary angiographic disease status prediction task [3], how we balance the error rates across
demographic groups can unearth historical biases in the measurements and calibrations of medical diagnostic
tools. This way, we endeavor to incorporate socio-economic inference models as part of participatory policy
making and algorithmic decision making.

Through my research vision, I will work towards enabling domain experts and ML researchers to work
together. We need to converge to a common understanding of how the ML models that power our decision
making systems operate; as enabling that interaction will have mutually beneficial outcomes. The challenges
of the future like climate change, pollution, health and toxicity in social media need our concerted efforts.
Through my research on incorporating domain structure into end-to-end ML models, I have opened the doors
for domain experts like economists, doctors, physicists, gene biologists, earth scientists, linguists, lawyers and
social scientists to provide inputs based on their domain knowledge to help build robust ML models. In the
future, I endeavor to work on bringing robust ML to more high-stakes domains like finance, transportation,
conservation and development to perform more efficient and safe decision making.
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