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The urban populations of lower income countries are increasing at unprecedented rates. Unfortunately, so are urban air
pollution rates. The centrality of air quality monitoring networks to the design of effective policy responses to this urban
health emergency is well-recognized. But, weak state capacity and limited city finances constrain the ability of lower-income
city governments to install reference grade air quality monitoring networks. Our study site of Delhi, India for instance, is
home to over 15 million residents but has a network of only 30 reference grade air quality monitors. Can low-cost sensor
based networks provide a robust monitoring alternative? In this paper, we evaluate this possibility using data from a low-cost
monitoring network of 28 custom-designed low-cost portable air quality sensors installed in a dense network in Delhi,
over a period of two years. Using data from reference grade monitors for validation, we show that low-cost sensors can be
used to derive a real-time spatio-temporal high-precision pollution sensing map. Using these, we build effective forecasting
models for both spatial and temporal pollution sensing. The main challenge is high spatio-temporal variability exhibited
by low-cost sensors, owing to factors such as sensor faults, network and power issues. We present a novel methodology
grounded in domain knowledge of pollution monitoring, that combines geostatistical approaches, spatio-temporal modeling
and message-passing recurrent neural networks. We are able to model spatio-temporal variations effectively and make
forecasts within 15 minute time-windows at 9.8%, 10.9% and 10.3% Mean Absolute Percentage Error (MAPE) over our low-cost
monitors, reference grade monitors and the combined monitoring network respectively. With these accurate fine-grained
pollution sensing maps, we provide a way forward to build citizen-driven low-cost monitoring systems that detect hazardous
urban air quality.

1 INTRODUCTION
Pollution forecasting in cities with dense populations can be critical for generating fine-grained policy recommen-
dations and public health warnings [11, 29]. The scale of accurate sensor based monitoring required to achieve
this can come at a huge cost and thus inhibit building a dense fine-grained pollution sensing map. In this paper,
we describe a methodology to model and forecast urban air quality at a fine-grained level using dense and noisy
low-cost sensors. There are two main questions we seek to answer in this paper – i) how can we use a network
of low-cost and portable air quality monitors in order to build a fine-grained pollution heatmap in a city that
provides accurate forecasting?, ii) does it help to augment existing monitoring networks by the local governments
with low-cost air quality sensors? We develop a hybrid model that combines many state-of-the-art approaches
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for spatio-temporal modeling: (a) a polynomial spline model that models daily trends; (b) a spatio-temporal
hierarchical model (STHM) for imputing missing data; and (c) a message-passing recurrent neural network
(MPRNN) that uses neighboring sensors’ information.

The deployment of low-cost particulate matter sensors to replace or augment reference grade pollution air
quality monitoring systems has been studied extensively recently, and have addressed issues of calibration
[13, 23, 24], design [27, 35], data selection [3] and personal exposure quantification [25, 39]. However, building
a highly accurate large scale fine-grained pollution sensing and monitoring map that leverages the size of a
pollution network has been largely unexplored. Specifically, modeling the behavior of noisy low-cost sensors in
cities with high pollution and population density has not been studied previously, with recent state-of-the-art
mapping approaches providing errors only in the range of 30-40% [6, 32]. This high error lends the pollution
sensing map unusable for policy making and air quality hazard detection. In this paper, we build on prior work
and model the pollution network in its entirety, with prediction models at each sensor location based on a
recurrent neural network model dependent on sensor-reading messages sent from near-by sensor locations.
Our adaptive statistical approach can incorporate data from several noisy and low-cost sensors and provides

an attractive and more viable alternative. We employ a data-driven approach in which first we fit a cubic spline
function that captures the daily and hourly mean trends, then we fit a spatio-temporal hierarchical model (STHM)
to impute missing values of sensors (due to power and network outages) and create a "baseline" spatio-temporal
field, and then finally model the residuals using a message-passing graph neural network that incorporate
spatial priors and temporal trends from nearby sensors’ data. We aim to forecast a given sensor’s readings of
the concentration of fine particulate matter (PM2.5) measured in 𝜇𝑔/𝑚3 using historical data of up to 8 hours
from all the sensors in the network. We make this choice because the primary advantage of low-cost sensors lies
in their ability to provide a large number of noisy measurements. By learning the variability of each of these
noisy measurements through message passing neural networks which have the ability to model each sensor
separately, we learn to not only separate the signal from the noise, but build an accurate sensing network of
low-cost sensors that achieves 10% Root Mean Squared Error (RMSE) in forecasting up to one hour in advance
over a fine-grained spatio-temporal grid as compared to baseline modeling approaches that provide 30% RMSE.
By using a sparse network of sensors, whose signals are shared through neural network embeddings, we learn to
capture the information from nearby sources that might affect the readings of nearby sources (e.g. factory) and
ignore the ones which are heavily localized (e.g. food cart). Such an accurate fine-grained pollution sensing map
( ≤ 10%MAPE) is usable by policy makers in deciding which neighborhoods of the city need interventions to
improve the air quality and population health (Figure 1). Estimating such models provides a way to efficiently use
information from several monitors to make predictions over a fine-grained grid, with the ability to seamlessly
and flexibly incorporate low-cost sensors in developing countries.

2 MODEL
We model our problem as a graph prediction problem, where we attempt to predict a value at every node at a
certain time from neighboring and historical values. In our setting, each sensor location 𝑣 ∈ V is a node in an
undirected graph. Assuming that air pollutants in one region can impact pollution in another space, we make
the graph complete, where an edge exists between every pair of nodes. The end goal for us is to train a model
that predicts at any node/location, the pollution level, measured in terms of the concentration of fine particulate
matter (PM2.5), at time 𝑡 + 1 given one or more readings from neighboring locations prior to 𝑡 + 1. We adopt a
three-step approach to achieve this. We first fit a cubic spline based on daily trends at each sensor location, then
we fit a spatio-temporal hierarchical model to impute missing data and then finally train a Message-Passing
Recurrent Neural Network (MPRNN) (§A.3) to predict raw PM values. In order to account for the amount of
influence based on the pairwise distances, we include the Euclidean distance between sensors as part of our
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Fig. 1. Message Passing Recurrent Neural Network for Pollution Monitoring in Delhi (a) Network of air quality
monitors in the entire greater Delhi region (b) Model architecture, showing 𝑀 sensor inputs feeding into the layers and
producing a single real output, illustrated by zooming on the selected region in (a). The computation goes from top to bottom.
The green boxes represent input PM concentrations from a set of locations, the grey boxes the hidden linear transformation
layers, with the numbers in the boxes representing the number of internal parameters to be learned, and the orange box
shows the RNN with the LSTM cells. Here 256 is the embedding size of the hidden layer messages passed, that was chosen
empirically based on performance. The final output is the single real value of PM concentration. The input to the RNN is
the vector output of length 256 from the hidden layer. More details are in the supplementary text. (c) Sample model of a
low-cost sensor (d) Our experimental testbed of monitors, and the quality of the PM2.5 data obtained. We had to contend
with frequent outages and communication issues that plagued our sensor network and affected data availability.

feature embedding in our message-passing formulation. We test this model by predicting values at locations
where sensors, and therefore ground truth information, are present, but the model is generalized enough to be
used to predict at locations where there is no ground truth data available. If 𝑦𝑣,𝑡 is the reading of the sensor
at location 𝑣 , at timestamp 𝑡 , and 𝑦𝑣,𝑡 is our corresponding prediction, we aim to minimize the mean absolute
percentage loss:

𝑀𝐴𝑃𝐸 =
∑
𝑣

∑
𝑡

|𝑦𝑣,𝑡 − 𝑦𝑣,𝑡 |
𝑦𝑣,𝑡

(1)

For pre-processing prior to the above message passing model being fit, we model daily temporal patterns per
sensor and per location. For example, if our prediction error follows a temporal pattern of say, higher prediction
error in the morning, while lower in the afternoon, we leverage this pattern by fitting piecewise polynomial
functions, called a spline. The residual sensor readings after the spline model is then used to fit the MPRNN
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model after an imputation step. As a default imputation procedure, we use the value at the same time of day
from the closest other day when data was available. Using this method to fill up the gaps in the data resulted in
reasonably good performance. We were further able to improve the performance slightly though by using a more
principled imputation approach that using Spatio-Temporal Hierarchical Model (STHM) (§A.7) to build a smooth
spatio-temporal field over the entire spatial and temporal domain, and then use that to fill up the gaps when data
was unavailable.

We contrast our combined model with two alternative state-of-the-art modeling approaches in order to set a
baseline to benchmark the MPRNN model performance. The first one is a model from geostatistics, similar to the
STHM model. When STHM is used solely for prediction, it performs poorly as it does not take in neighboring
sensors inputs when they are missing, whereas in the best performing model, we use the STHM imputations as
part of the messages in the MPRNN model. The second baseline is an alternative neural network formulation
that employs information from a specified number (𝐾) of nearest neighbors to predict the value at a location,
called the 𝑘-Nearest Neighbor (𝑘-NN) Spatial Neural Network (§A.7).

3 RESULTS

Model Our sensors Govt monitors Combined

RMSE MAPE RMSE MAPE RMSE MAPE

STHM 29.5 33.2% 38.3 32.7% 31.4 37.8%

k-NN v1 73.2 59.3% 108.3 64.7% – –

k-NN v2 38.8 35.7% 69.7 52.6% 54.2 51.6%

MPRNN 37.1 34.4% 65.2 51.3% 56.3 51.6%

Per-Sensor Spline 25.1 32.8% 60.4 49.1% 47.3 36.5%

STHM + Spline 21.8 25.8% 27.2 24.9% 24.2 26.2%

k-NN v2 + Per-Sensor Residual Spline 11.6 16.3% 18.1 13.4% 12.8 14.7%

MPRNN + Per-Sensor Residual Spline 9.8 10.2% 13.2 11.7% 10.4 12.6%

Per-Sensor Spline + Residual MPRNN 10.1 10.5% 14.7 12.2% 10.7 13.5%

MPRNN with STHM imputation + Per-Sensor Residual Spline 9.5 9.3% 12.7 10.5% 10.1 9.7%

Per-Sensor Spline + MPRNN with STHM imputation 9.5 9.4% 12.6 10.5% 10.1 9.6%

MPRNN with STHM imputation + Average Residual Spline 10.1 9.8% 13.2 10.9% 11.2 10.3%

Table 1. RMSE and MAPE of prediction of PM concentrations, averaged across all the sensor locations. The RMSE is in units
of 𝜇𝑔/𝑚3. The best performing model is shown in boldface. The MPRNN works well to predict a “baseline” PM concentration
based on historical trends and neighboring influences, while a well-trained spline helps to finely tune the prediction after
subtracting the baseline prediction from the ground truth. In comparison with the k-Nearest Neighbor neural network
model, the MPRNN is definitely an improvement, and this improvement is more noticeable after the spline correction. This is
because it explicitly models influences among the nodes in the graph in the form of message-passing. The v1 is a simplistic
model not too different from a time series modeling method, and assumes an inverse square law distribution between the
influence of neighboring readings and the respective distances. Clearly, a time series-based approach alone, discounting
neighboring influences, performs rather poorly. On the other hand, k-NN v2 does not assume any such prior relationship
between the distance and influence. The v2 embeds the distance and bearing into the feature vector and lets the training
process determine the right parameters and relationship among them, thus providing better results than v1.
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(a) Bar plot comparing ourmethodologywith other competing
approaches

(b) Distribution of MAPE across all the locations shown as a
cumulative density function (CDF)
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(c) Prediction errors of the best performing model
(MPRNN+Spline) at every monitoring location on the map
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(d) Errors of the final prediction zoomed into the regions with
highest concentration of sensors (New Delhi and South Delhi)

Fig. 2. Prediction errors of PM2.5 during the test period (Nov 1, 2019 - May 1, 2020) shown as the Mean Absolute Percentage
Error (MAPE) of the ground truth and predicted PM2.5 concentration. In this period, the PM2.5 concentration values ranges
between 0 and 1000 𝜇𝑔/𝑚3, and average value being ∼130 𝜇𝑔/𝑚3

In our data available from May 1, 2018 till May 1, 2020, we use the data until Oct 30, 2019 for training (75%) and
hold out the remaining (25%) for testing. We report two criteria – the root mean squared error (RMSE) and the
mean absolute percentage error (MAPE). We evaluate our models on the data from the combined set of our 28
low-cost sensors and the 32 government monitors, as well as separately on each set. For each of these locations,
we compare our model based predictions with the ground truth of the measurement of the pollution sensor.
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Overall, the MPRNN model with imputed data (see Methods), along with the spline correction either done
during pre-processing or post-processing, work well to predict a “baseline” PM concentration level, over which a
spline correction provides impressively good performance on predicting the PM concentration across all locations.
By estimating a spline per location, we are able to improve our predictive performance significantly. But we
can perform nearly equally well by estimating an “average” spline over all the locations. Across all locations,
the median RMSE and MAPE are 9.15 𝜇𝑔/𝑚3 and 8.64% respectively. The best case values are 4.28 𝜇𝑔/𝑚3 and
5.57% respectively, and the worst case values are 24.1 𝜇𝑔/𝑚3 and 19.64% respectively. The location where we have
minimum MAPE is at a location in Green Park, a very busy area of south Delhi, further validating the need for
fine-grained pollution sensing in a large city like Delhi.

It is interesting that even though our approach provided better results overall, the STHM does a better job of
predicting a spatio-temporal field when using the data from the public monitors, which is spread over a larger
geographical area, is more superior in quality and also has far fewer gaps in the data in this time period, all in total
contrast to our network. We infer that the hierarchical model is better suited for building coarse spatio-temporal
fields and imputing data, whereas the neural network models are better suited for fine-tuning our prediction
numbers due to the amount of control they provide. This is also evident from the fact that the hierarchical
model provides better performance when using the public monitoring network alone, in comparison to the other
methods, prior to the spline correction. For the same reason, our final fine-tuned predictive performance using
Spline+MPRNN+STHM on the public monitoring network does not match that on our low-cost sensor network.

4 DISCUSSION
Our contributions are significant when compared to the recent and fast-growing literature that explores the
use of distributed sensor networks to gather information on air pollution and other meteorological variables
in urban contexts. Clements et al.[7] provide a comprehensive review of many such works. In the last few
years, researchers have sought to learn more about how pollution sensing systems of low-cost sensors may be
deployed in urban contexts [10, 19, 21, 26, 31, 33, 36]. With the exception of Gao et al. [10], who examine the
performance of fine particulate sensors in Xi’an in China, most of these deployments have occurred in areas with
significantly lower air pollution than the city of Delhi in India. In this paper, we provide evidence of modeling
a fine-grained low-cost pollution sensing map from a highly polluted city like Delhi. Gao et al. [10] also point
out that low-cost PM2.5 sensors may perform worse in very low pollution environments, suggesting that they
may be relatively more useful when particulate concentrations are high. While their study focused on Xi’an, a
large city (area: 3,898𝑚𝑖2) with only 8 low-cost sensors, we dramatically increase the density of the deployment
by 28× in Delhi (area: 573𝑚𝑖2) with 28 sensors. Further, the large longitudinal dataset we have been able to
capture over 2 years as compared to prior work which captured at most a few weeks of data, allows us to model
long-term seasonal changes and train more complex neural network models that can adapt to seasonal and
daily patterns and produce significantly low RMSE. Related approaches in this space can be broadly classified
into three groups – spatial interpolation approaches, land-use regression and dispersion models Xie et al. [37]
Jerrett et al. [18]. In the case of dispersion models, they assume that an appropriate chemical transport model
is identified along with their parameter values, and a high-quality emissions inventory. In the case of land-use
regression models, having access to environmental characteristics that significantly influence pollution is critical.
This additional data is often suited for longer range predictions, as the geographical and meteorological data vary
over a longer temporal and coarser spatial grids [38]. For instance, in the US EPA dispersion model, parameters
are estimated on grid cell squares with a length in the order of a few kilometers [9], while the parameters are
used for inference of meteorological outputs at spatial resolutions of up to 500m. Our approach, in contrast relies
on fine-grained positioning of low-cost sensors and makes the case for crowdsourcing pollution sensing. This
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AM - 8 AM)

0.7140 0.7142 0.7144 0.7146 0.7148

0.4166

0.4168

0.4170

0.4172

0.4174

0.4176

Before spline correction

0.7140 0.7142 0.7144 0.7146 0.7148

0.4166

0.4168

0.4170

0.4172

0.4174

0.4176

After spline correction

20

30

40

50

60

70

10

15

20

25

Slot 2

(b) Distribution of residuals: Slot 2 (8
AM - 4 PM)
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(c) Distribution of residuals: Slot 3 (4
PM - 12 AM)

(d) Cubic spline correction

(e) Ground truth PM2.5 (blue), along
with MPRNN prediction (green) and
final prediction after spline correction
(red) at one of our sensor locations in
Chanakyapuri in New Delhi.

(f) Ground truth PM2.5 (blue), along
with MPRNN prediction (green) and
final prediction after spline correction
(red) at the CPCB monitor at Sirifort
in South Delhi.

Fig. 3. This figure aims to show the interpretation of the spline correction, and its effect on the residual. The top two rows
show the distribution of the residuals (in PM units of 𝜇𝑔/𝑚3) over space, before and after the spline correction. Three different
splines were fitted over the residuals in three different time slots in the day. We observe that for the most part, locations that
exhibited high residual errors after MPRNN fit (in the upper quantiles of the residual error distribution) continued to show
high error (relative to other locations) even after spline correction, even though the magnitude of the residual does decrease.
This phenomenon is partially explained by the high baseline values of the sensors with high residual errors, that is often
coupled with high variance in measurement - which we are yet to better capture in our modeling.
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way, we demonstrate that a collective effort from citizens using low cost sensors can actually help in building a
high quality pollution sensing map.

The low MAPE and RMSE across all monitors in Delhi provided by our Per-Sensor Spline+MPRNN with STHM
imputation model is significant as it can detect hazardous air quality with high precision. The WHO air quality
standards prescribe that 𝑃𝑀2.5 levels should not exceed 10 𝜇𝑔/𝑚3 and 35 𝜇𝑔/𝑚3 at an annual and daily average
levels, while the Indian Government air quality standards prescribe 40 𝜇𝑔/𝑚3 and 60 𝜇𝑔/𝑚3 respectively. We note
that for the 60 sensors, Delhi has exceeded these prescribed levels 371 out of the 641 days on a daily level, across 2
years of our measurement. The 9.7 % MAPE error that we are able to achieve, corresponds to the ability to detect
hazardous air quality as per Indian government standards with 93.5% precision and 90.8% recall. This further
indicates that the low error rate we have obtained leads to an almost exact forecasting of hazardous air quality.
This enables citizen-driven sensing where pollution sensor readings can be crowdsourced and effective policy
interventions like clean energy policies that penalize construction sites that have PM 2.5 levels more than 25%
higher than the nearest monitoring center can be operationalized 1. Specifically, the improvement in forecasting
power is achieved in specific pollution hotspots like bus stations, markets, etc (Figures 2c, 2d). In addition, we
can provide transparency of the overall average pollution of the city 2 and contribute towards increasing the
co-benefits of clean energy policies [28, 34]. The development of fine-grained pollution sensing maps at low-costs
can further catalyze the deployment of such monitoring networks in other polluted cities, where the pollution
networks are sparse. With citizens procuring, deploying and modeling pollution of cities accurately, this paper
provides a way forward for developing high-quality fine-grained pollution sensing maps.
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A MATERIALS AND METHODS

A.1 Data
The data used for the modeling the air pollution levels in Delhi was sourced from a combination of 32 local Delhi
government monitors and a network of 28 low-cost sensors deployed by us in various locations of Delhi from
May 2018 to May 2020. The average availability of each of these sensors are about 90% and 30% over the measured
period respectively. Correspondingly, we calibrate our sensors, provided by Kaiterra3, against the government
sensors, by conducting a longitudinal comparison study by measuring in close proximity to the location of the
government monitoring centers. The locations and their summary statistics of the sensors by location is given by
the Tables 2 and 3.

A.2 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) belong to a broader family of deep neural networks which are general
function approximators [16]. In this experiment, the purpose of using a deep model is to model the complex
nonlinear dependencies between the input and output without the need to impose an explicit physical model. We
specifically choose RNNs because they are well suited for modeling sequential or time series data. The working
of an RNN can be described simply by the function Φ in the equation 𝑦𝑡 , ℎ𝑡 = Φ(𝑦𝑡−1, ℎ𝑡−1), where 𝑦𝑡 refers to a
label or value that is predicted by the network at time 𝑡 , and ℎ𝑡 is an internal state that represents the “memory”
of the network at time 𝑡 . Given sequential data of the form 𝑦0, . . . , 𝑦𝑡 , Φ is applied repeatedly to predict label 𝑦𝑖 ,
state ℎ𝑖 and so on until time 𝑡 . The initial internal state ℎ0 is assumed to be zero in most applications. The number
of such recursive computations (equivalently, the number of cells in the unraveled RNN) defines the length of the
history that is used in the learning process to predict the value at 𝑡 + 1. However, while RNNs provide a semantic
framework for prediction of sequential data, they provide no innate mechanism in deciding when the internal
state ℎ should be modified. This challenge is addressed by Long-Short Term Memory (LSTM) cells [15] which
explicitly facilitates the persistence or re-initialization of the internal state vector ℎ over real sequential data. The
use of LSTM cells in RNN architectures have been empirically shown to improve predictive power in temporal
data because of their ability to learn long-term dependencies, and hence we employ them in our model.

A.3 Message-Passing Recurrent Neural Network
Message-Passing Recurrent Neural Network (MPRNN ), based on [12, 17], is a neural network architecture that is
applied on a graph in order to predict values at each node in the graph. This approach enables to us incorporates
spatial interactions between each pair of nodes as “messages” that are broadcast from every node to its neighbors.
Each node has a modified version of a Long Short Term Memory (LSTM) network (§A.2) that iterates between
message-passing and the recurrent computations.

We denote by 𝑦𝑣,𝑡 the PM concentration, measured in 𝜇𝑔/𝑚3, at a node 𝑣 and time 𝑡 . Mathematically, we would
like to learn a function F such that 𝑦𝑣,𝑡+1 = F (𝑣1, 𝑦𝑣1,𝑡 , 𝑣2, 𝑦𝑣2,𝑡 , . . . ; 𝑣 𝑗 ∈ V) where the setV denotes the set of
all the nodes in the graph. A recurrent neural network unit (§A.2) is assigned to each node in the graph, with
each node 𝑣 maintaining a hidden state ℎ𝑣,𝑡 at time 𝑡 . Through a message-passing phase and an time-recurrent
phase, our model infers the next hidden state ℎ𝑣,𝑡+1 from which the PM value at 𝑣 is decoded. A message-passing
operation allows one segment to observe the hidden state of its neighboring segments.

The computation proceeds in five steps, as five layers of the neural network. In the first phase, the observation
phase, the measurements 𝑌𝑡 = {𝑦𝑣,𝑡 |𝑣 ∈ V} at time 𝑡 are encoded into ℎ𝑣,𝑡 by the observation operation𝑂𝑣 . In the
second and third phases, one or more iterations of messaging (𝑀) and updating (𝑈 ) operations are performed to
propagate the observations in the graph. In the fourth phase, for each node, a time-recurrent operator𝑇𝑣 utilizing

3https://www.kaiterra.com/
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Monitor ID Count Min Max Median Max Std. Dev

AnandVihar_DPCC 13562 0.0 985.0 97.0 141.4 130.4

AshokVihar_DPCC 15244 0.0 972.0 76.0 121.3 122.2

AyaNagar_IMD 14228 0.1 954.0 64.6 86.8 81.7

BurariCrossing_IMD 9593 0.1 989.7 85.7 125.8 121.2

CRRIMathuraRoad_IMD 14712 0.0 973.8 76.3 112.1 108.3

DwarkaSector8_DPCC 15208 0.0 958.3 71.8 108.6 102.4

IGIAirport_IMD 14168 0.1 867.2 60.3 90.8 88.2

IHBAS_CPCB 14518 0.0 989.6 83.8 111.3 93.0

ITO_CPCB 14410 0.0 989.3 82.0 115.9 103.9

Jahangirpuri_DPCC 15077 0.0 994.0 96.0 136.8 123.6

JNS_DPCC 14979 0.0 929.0 65.8 105.5 104.7

LodhiRoad_IMD 14322 0.3 980.8 64.1 87.7 79.8

MandirMarg_DPCC 14825 0.0 945.0 76.0 104.4 91.9

MDCNS_DPCC 15239 0.3 985.8 70.5 99.3 88.7

Mundaka_DPCC 13503 0.0 988.5 89.0 134.8 132.1

NehruNagar_DPCC 15262 0.0 997.5 74.8 128.0 134.5

NSIT_CPCB 15220 0.0 997.5 92.6 113.5 81.8

OkhlaPhase2_DPCC 15002 0.0 987.0 71.5 109.3 105.2

Patparganj_DPCC 14865 1.0 997.0 163.0 197.8 140.9

PunjabiBagh_DPCC 14899 0.0 997.0 178.3 217.7 154.0

Pusa_DPCC 13625 0.0 978.0 68.0 105.7 101.1

Pusa_IMD 14578 0.1 986.3 57.0 84.0 83.4

RKPuram_DPCC 13535 0.0 877.3 77.0 109.9 101.6

Rohini_DPCC 15045 0.0 967.0 84.3 132.6 125.4

Shadipur_CPCB 14627 0.0 997.2 90.3 117.6 94.6

Sirifort_CPCB 14706 0.0 994.3 70.8 104.8 99.2

SoniaVihar_DPCC 15021 0.0 984.0 75.3 112.6 106.3

SriAurobindoMarg_DPCC 13687 0.0 992.8 63.5 93.9 89.1

VivekVihar_DPCC 14922 0.0 957.3 70.5 113.6 113.7

Wazirpur_DPCC 15125 2.8 969.8 92.0 140.6 129.4
Table 2. Summary Statistics of Government Pollution Monitors
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Monitor ID Count Min Max Median Max Std. Dev

113E 10173 2.17 959.00 66.33 113.71 113.95

1FD7 3804 1.49 444.67 59.96 85.89 74.46

20CA 8654 0.90 809.33 55.57 91.39 92.48

2E9C 1733 7.00 617.50 112.00 135.55 99.77

3ACF 813 0.00 319.00 32.25 44.94 39.78

498F 954 6.50 241.67 55.50 67.43 41.52

4BE7 9110 3.00 743.36 79.68 124.31 117.20

56C3 6546 2.58 664.08 61.25 101.83 101.36

5D7A 2776 6.17 427.07 41.55 52.22 40.37

603A 6274 2.75 1047.42 65.92 102.98 100.09

72CA 13862 2.75 909.75 80.54 118.64 104.55

8E2A 7480 0.00 1117.36 57.71 104.35 115.37

91B8 2753 9.62 1145.77 81.67 125.61 120.51

97D7 7001 0.00 507.83 54.67 89.30 83.99

A838 4429 4.08 827.67 99.08 143.51 128.52

A9BE 14436 1.50 1110.75 64.00 104.61 101.38

BB4A 4407 0.00 486.95 50.75 87.52 88.03

BC46 11223 4.17 1142.92 69.50 114.94 114.54

BFDC 859 5.33 371.08 56.33 75.10 61.09

C0A7 10246 1.42 696.83 62.17 97.26 90.50

CBC7 10952 1.42 915.73 62.67 95.30 87.14

D804 7220 2.08 563.00 54.69 88.01 86.25

DF07 6962 0.00 507.83 54.91 89.91 84.22

E1F8 4721 3.00 481.50 72.83 105.27 92.66

E47A 1009 13.00 274.67 63.08 72.65 41.49

E486 12058 1.00 954.82 77.58 111.79 100.88

E8E4 4280 7.83 1205.50 98.58 145.60 127.31

EAC8 12652 0.33 836.42 63.74 100.88 94.85
Table 3. Summary statistics of low-cost pollution sensor network
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an LSTM unit takes as input the final hidden state ℎ𝑣,𝑡 and predicts the next hidden state ℎ𝑣,𝑡+1. The final phase is
the readout operation 𝑅𝑣 , which decodes the hidden state to produce the output value to be predicted 𝑦𝑣,𝑡+1. These
five steps are shown below. The message function takes as input the hidden states of a pair of nodes 𝑣 and 𝑛 and
the Euclidean distance between them, 𝑑𝑣,𝑛 as the influence of the pollution at a given location on the pollution at
another location would depend on the distance between them. Hence we include the distance in the embedding.

ℎ𝑣,𝑡 = 𝑂𝑣 (ℎ𝑣,𝑡−1, 𝑦𝑣,𝑡 ) (2)

𝑚𝑣,𝑡 =
∑
𝑛∈𝑉−𝑣

𝑀 (ℎ𝑣,𝑡 , ℎ𝑛,𝑡 , 𝑑𝑣,𝑛) (3)

ℎ𝑣,𝑡 = 𝑈 (ℎ𝑣,𝑡 ,𝑚𝑣,𝑡 ) (4)
ℎ𝑣,𝑡+1 = 𝑇𝑣 (ℎ𝑣,𝑡 ) (5)
𝑦𝑣,𝑡+1 = 𝑅𝑣 (ℎ𝑣,𝑡+1) (6)

For a selection of nodesW in the graph, the components of the model {𝑂𝑤, 𝑀,𝑈 ,𝑇𝑤, 𝑅𝑤, |𝑤 ∈ W} are defined.
During inference, the states 𝐻𝑡 = {ℎ𝑤,𝑡 |𝑤 ∈ W} are maintained at each timestep. The hidden state for each
segment is initialized at 𝑡 = 0 randomly during training and evaluation ℎ𝑣,0 ∼ N(0, 1).

A.4 Estimation of Residuals
The residual errors from the above MPRNN model is then fit based on the daily spatio-temporal patterns per
sensor and per location. For example, if our prediction error follows a temporal pattern of say, higher prediction
error in the morning, while lower in the afternoon, we can leverage this by fitting piecewise polynomial function
called the spline on the residual errors. This spline can be of any order, but given our residual error patterns, we
saw that a 3-way piecewise cubic spline works best. Given that at each timestamp 𝑡 , after applying our MPRNN
model’s predictions, let the residual raw error be given by 𝜖 (𝑣, 𝑡)

𝜖 (𝑣, 𝑡) = 𝑦𝑣,𝑡 − 𝑦𝑣,𝑡 (7)
This residual error can then be predicted by our residual spline model as follows using a piece-wise spline for

a sensor 𝑣 and time-period 𝑝:
𝜖𝑝 (𝑣, 𝑡) = 𝛼𝑣,𝑝 ∗ 𝑡3 + 𝛽𝑣,𝑝 ∗ 𝑡2 + 𝜅𝑣,𝑝 ∗ 𝑡 + 𝜈𝑣,𝑝 (8)

Note that the chosen parameters per sensor 𝛼𝑣,𝑝 , 𝛽𝑣,𝑝 , 𝜅𝑣,𝑝 , 𝜈𝑣,𝑝 , where 𝑝 ∈ {“morning”, “afternoon”, “evening”},
depend on the patterns in our residual errors and are fit accordingly to minimize the root mean squared residual
error:

𝑅𝑀𝑆𝐸 (𝑣) =
∑
𝑡

∑
𝑝

√
(𝜖 (𝑣, 𝑡) − 𝜖𝑝 (𝑣, 𝑡))2 (9)

To check the resilience of these per-sensor splines, we also compute an average spline across all available
sensor residual errors over the training data, by marginalizing over the sensors. Through our study, we show
how per-sensor residual splines vary across geographies and how the average spline can sufficiently operate
for bootstrapping or regions where we do not have enough sensor data to begin with. Not only are the sensor
splines different across regions, we do see that regions with significantly high spline residual errors like the
sensors A838, E8E4, 2E9C in Fig. 4a, are all located in central locations of Delhi with well established commercial
activity like Connaught Place, Sardarjung Enclave and Lado Sarai respectively. Further, in Fig. 4b, the outliers
with significantly high residual error splines among the government monitoring stations are Patparganj DPCC,
PunjabiBagh DPCC and DKSSR DPCC. While Patparganj is situated next to an industrial area, Punjabi Bagh is
a well known residential locality with established commercial activity centers and DKSSR is a shooting range
located in the outskirts of Delhi next to an inter-state highway. The diversity of these splines across various
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geographical regions further indicate the need to model fine-grained pollution profiles in seemingly remote as
well as central locations of Delhi.

A.5 History length and Network Size
While a recurrent neural network is capable of predicting labels on a rolling basis, computing and backpropagating
a loss function through an arbitrarily long history is not feasible. As a result, our recurrent neural network is
trained on segments of fixed history length. That is, the state of the neural network is persisted through a number
of points equal to the history length, and then reset. We experimented with several different reasonable history
lengths during training and chose a history of 8 hours (32 measurements, at one reading per 15 minutes). Each
training example consisted of a block of history length 𝐻 = 32 collected at time step 𝑡 for a chosen set of sensors
except for the target sensor. Further, when we forecast by leaving out history of the past 24 hours and rely on
previous day’s data we see that the forecasting error increases by up to 18.3%, 19.5% and 17.2% MAPE error in
our sensors, government monitors and the combined sensor network respectively.
Further, we see that the number of sensors we augment in addition to the government monitors reduces the

overall MAPE for the size of the network chosen. We report the mean of 10 samples of networks at a given size
along with the standard deviations in Figure 5.

A.6 Training
Since neural networks take only fixed length input feature vectors, our formulation required the training of
several models, one for each value of 𝐾 . We trained a total of 10 models, for 𝐾 from 1 to 10. By combining these
10 different models, we obtain a master model, that generalizes to predicting 𝑦𝑣,𝑡 at any location 𝑣 at a given time,
regardless of the number of available neighboring input sensors at the time, using data from up to a maximum of
10 available input sensors. For each value of 𝐾 , and for each sensor 𝑣 in our set, we extracted blocks of available
data of length 𝐻 = 32 through the entire year from the 𝐾 nearest neighbors to 𝑣 . Then we merged all the blocks
together for each version and each value of 𝐾 , thus giving us a large dataset of training samples mapping 𝐾
sensor readings to output sensor values over the history length 𝐻 (i.e. a sample consisted of a block of dimensions
𝐻 × 𝐾 or 𝐻 × 3𝐾 depending on the version). The list of samples was then shuffled prior to feeding into the
neural network to reduce the chances of the optimization algorithm becoming stuck in local optima and and also
increase the test prediction performance. We repeat this mechanism for every value of 𝐾 , giving us totally 10
models for each version.
We needed at least 20 epochs for convergence. With a total of at least 2000 batches for every value of 𝐾 , the

training for each 𝐾 and version took prohibitively large amount of time (several days). Hence we resorted to
reduction of training time by selecting only a smaller number of samples from the entire corpus of samples for
each 𝐾 and version The shuffling of training samples thus allowed us to “effectively” reduce our training time
and yet not lose generality since the shuffling ensured that data from all round the year was utilized for training.
We used the pytorch [1] library in Python for implementing the neural network and the Adam optimizer [20]
for training.

A.7 Baselines
Nearest Neighbor Spatial Neural Network:We contrast the MPRNN with a more simplified neural network
model in which messages are not explicitly passed between pairs of nodes, but rather the sensor readings from a
set of neighboring monitors to a location 𝑣 at time 𝑡 are directly used as input. Each node runs a neural network
with an LSTM unit for predicting future values, similar to the MPRNN. The pairwise distances and relative
positions are encoded in the feature vector along with the input sensor readings. At each node, only a certain
number of closest neighbors are used as input to model the air quality at that location, in contrast to the MPRNN
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(a) Splines for each of the 28 sensors
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Fig. 4. The daily variations in the splines learnt for each of the sensors show that there are temporal patterns which when
incorporated into a prediction model can significantly improve prediction accuracy
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Fig. 5. Impact of sensor network size on forecasting error

where all the other sensors are used. We call this model the K-Nearest Neighbor (K-NN) Spatial Neural Network
since the input for the prediction task at a location 𝑣 is the set of sensory readings from 𝐾 nearest monitors to 𝑣
and their relative locations in terms of distances and positions, where 𝐾 is a positive number.
The equation denoting the function to approximate is similar to that for the MPRNN, except that we restrict

the number of input sensor locations to 𝐾 , where 𝐾 is a parameter: 𝑦𝑣,𝑡 = F (𝑣1, 𝑦𝑣1,𝑡 , 𝑣2, 𝑦𝑣2,𝑡 , . . . , 𝑣𝐾 , 𝑦𝑣𝐾 ,𝑡 )) In
this equation, 𝑣 𝑗 denotes the 𝑗 th nearest neighbor to 𝑣 . 𝐾 is the maximum number of neighboring sensors that
can provide input sensory data. Note that the set of nearest neighbors 𝑣1, 𝑣2, . . . 𝑣𝐾 and 𝐾 itself are functions of
time, since at time 𝑡 , these are the sensors at which data is available and the number of such sensors, respectively.
For each input sensor at location 𝑣 𝑗 , we add as feature the triple of the sensor reading, the geodesic distance
between 𝑣 and 𝑣 𝑗 , the compass bearing of 𝑣 𝑗 with respect to 𝑣 . The length of the feature vector is thus 3𝐾 , where
𝐾 is th number of available sensors at that time.

Spatio-temporal Hierarchical Model: The Spatio-Temporal Hierarchical Model (STHM) is a statistical
modeling framework from geostatistics. It combines various sources of information, accommodates missing
values and computes predictions in both space and time. This statistical model is hierarchical in that it distinguishes
between observed variables, such as the actual PM measurements, and underlying processes that are not directly
observed. In a state space terminology the latter are known as unobserved states, while in some statistics
literature they are known as random effects or latent variables (see e.g. Harvey [14]). The hierarchy is explicit
since the model is defined through multiple levels of equations, where a higher level typically involves variables
conditioned on the variables defined at deeper levels. This allows the important identification of two sources of
error: measurement error which applies to the observations, usually at the highest hierarchical level, and process
error which enters the specification of the dynamics of the underlying processes at deeper levels. We refer to
Cressie and Wikle [8] for details about the relevance of this hierarchical framework for spatio-temporal modeling,
how it is currently considered state-of-the-art, and for links to the geostatistics literature. In particular, optimal
spatial prediction (often referred to as Kriging) pertains to the prediction of underlying processes and not of the
noisy measurements and is addressed below.
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Successful recent applications of such hierarchical models for the spatio-temporal modeling of air pollution
include [4], [5] and [2]. Our model proposed below generally follows these references for the dynamics in space
and time of an underlying specified random field modeled as a Gaussian process.
Notation: Let D ⊆ R2 denote the spatial domain of interest and 𝑌 (𝒔, 𝑡) denote the PM2.5 concentration in

𝜇𝑔/𝑚3 measured at location 𝒔 and time 𝑡 . The location vector 𝒔 = (𝑠1, 𝑠2)⊤ ∈ D ⊆ R2 consists of geographical
coordinates 𝑠1 and 𝑠2 in the plane following a map projection, such as easting or northing in km according to
the Universal Transverse Mercator (UTM) coordinate system, so that a notion of distance ℎ(𝒔, 𝒔 ′) ∈ R can be
unequivocally defined. Following Cameletti et al. [4, 5], the top hierarchical level of our STHM is specified by the
following measurement equation.

log𝑌 (𝒔, 𝑡) = 𝒛 (𝒔, 𝑡)⊤𝜷 +
𝐽∑
𝑗=1

𝛼 𝑗𝐵 𝑗 (𝑡) + 𝑋 (𝒔, 𝑡) + 𝜖 (𝒔, 𝑡), (10)

Here 𝑡 = 1, 2, . . . is a discrete representation of timestamps (regardless of the actual temporal resolution of the
data), 𝒛 (𝒔, 𝑡) is a 𝑝-vector of covariates which defines deterministic (fixed) effects along with the corresponding
coefficient 𝜷 , 𝐵 𝑗 (𝑡) for 𝑗 = 1, . . . , 𝐽 is a set of specified (periodic) basis functions used to model seasonality effects
along with the corresponding basis coefficients 𝛼 𝑗 , 𝑋 (𝒔, 𝑡) is a mean zero Gaussian process whose dependence
structure in space and time is specified at the second hierarchical level, and the 𝜖 (𝒔, 𝑡)’s are measurement error
terms assumed independent and identically distributed as Gaussian with mean zero and constant variance 𝜎2𝜖 (the
latter known as the “nugget” effect in the geostatistics literature). As a result, the log𝑌 (𝒔, 𝑡)’s are independent
conditionally on 𝑋 (𝒔, 𝑡), for all 𝒔 ∈ D. The modeling on the natural logarithm scale ensures the positivity of 𝑌 .
We note that although deterministic effects enter as a linear combination, any auxiliary information can be part
of 𝒛 (𝒔, 𝑡). For instance, outputs from a dispersion model predicting the propagation of fine particles from various
environmental inputs would enter the STHM through 𝒛 (𝒔, 𝑡)⊤𝜷 . In the application of this model to our Delhi
sensor data, we however place ourselves in a data-poor situation with no extra information other than the air
pollution measurements themselves, so that no auxiliary deterministic effects are estimated and 𝒛 (𝒔, 𝑡)⊤𝜷 = 0
for all observations. We model daily seasonality with 𝐽 = 6 quadratic B-spline bases over four disjoint time
intervals: [00:00–06:00), [06:00-12:00), [12:00–18:00) and [18:00–00:00). This implies 𝐽 − 1 = 5 fixed knots to
facilitate interpretation of periodic patterns throughout the day. The corresponding 𝛼 𝑗 coefficients are estimated
from the data but only 𝐽 − 2 = 4 are free since we enforce two constraints for the continuity and differentiability
of the resulting linear combination at the boundary at midnight. The intercept term (constant mean level) is
included in the B-splines linear combination.
The second hierarchical levels describes the temporal dynamics and spatial dependence structure of the

underlying stochastic process 𝑋 . The process equation describes a stationary autoregressive (AR) process of first
order through time:

𝑋 (𝒔, 𝑡) = 𝜙𝑋 (𝒔, 𝑡 − 1) + 𝛿 (𝒔, 𝑡), (11)

for 𝑡 = 1, 2, . . . and 𝒔 ∈ D, where the constraint on the AR coefficient |𝜙 | < 1 ensures stationarity, and the process
error 𝛿 is distributed as Gaussian with expectation zero. The 𝛿 terms are temporally independent but spatially
dependent:

Cov[𝛿 (𝒔, 𝑡), 𝛿 (𝒔 ′, 𝑡 ′)] =


0 𝑡 ≠ 𝑡 ′

𝐶 (ℎ(𝒔, 𝒔 ′);𝛾, 𝜎𝛿 ) 𝑡 = 𝑡 ′,
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where 𝐶 is a (positive-definite) spatial covariance function; we set it to the stationary and isotropic exponential
spatial covariance function for simplicity:

𝐶 (ℎ(𝒔, 𝒔 ′);𝛾, 𝜎𝛿 ) = 𝜎2𝛿 exp(−ℎ(𝒔, 𝒔
′)/𝛾),

where ℎ(𝒔, 𝒔 ′) =
√
(𝑠1 − 𝑠 ′1)2 + (𝑠2 − 𝑠 ′2)2 is the Euclidean distance between locations 𝒔 and 𝒔 ′, 𝜎2

𝛿
is the process

variance for ℎ(𝒔, 𝒔 ′) = 0, and 𝛾 regulates the steepness of the exponential decay of the covariance with increasing
distance. The initial states 𝑋 (𝒔, 0) follow the stationary distribution, i.e. a Gaussian distribution with mean zero
and covariance matrix given by 𝐶 (ℎ(𝒔, 𝒔 ′);𝛾, 𝜎𝛿 )/(1 − 𝜙2) for 𝒔, 𝒔 ′ ∈ D.
Overall, this STHM involves (𝑝 + 8) fixed parameters,

𝜽 = (𝜷⊤, 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝜎
2
𝜖 , 𝜙,𝛾, 𝜎

2
𝛿
)⊤,

while the dynamic spatial field 𝑋 will be predicted given an estimate of 𝜽 . With the Delhi data, there is no 𝜷 to
estimate so that 𝑝 = 0 and only 8 parameters are estimated.
Interpolation Given �̂� , we predict the underlying dynamic spatial field by maximizing the joint log-likelihood

�̂� (0), . . . , �̂� (𝑇 ) = argmax
𝒙

log𝐿(�̂� ;𝒚, 𝒙). (12)

This maximization can also be invoked for out-of-sample prediction, either for a new location, for forecasting
in time, or for both simultaneously. That is, the PM2.5 forecasting at time 𝑡 + 1 for a new location 𝒔 ′ is given
by exp

(
𝒛 (𝒔 ′, 𝑡 + 1)⊤�̂� +∑𝐽

𝑗=1 𝛼 𝑗𝐵 𝑗 (𝑡) + 𝑋 (𝒔 ′, 𝑡 + 1)
)
, where 𝑋 (𝒔 ′, 𝑡 + 1) is indeed obtained by maximizing the

joint log-likelihood for given parameter estimates. To be precise, such a forecast is not a prediction for the
noisy measurement 𝑌 (𝒔, 𝑡), but really a prediction of the true underlying PM2.5 concentration represented by
exp

(
𝒛 (𝒔 ′, 𝑡 + 1)⊤𝜷 +∑𝐽

𝑗=1 𝛼 𝑗𝐵 𝑗 (𝑡) + 𝑋 (𝒔 ′, 𝑡 + 1)
)
. Our predictions can thus be seen as Bayesian posterior modes,

while spatial prediction by Kriging typically corresponds to posterior expectation, see Chapter 4 of Cressie and
Wikle [8] for a discussion.

For a given time point 𝑡 , plotting the predicted PM2.5 concentrations as a smooth map by simple interpolation
over the 𝑛 measured locations likely gives rise to visual artifacts and distortions if either 𝑛 is too small or if
the measured locations are not spread evenly over D. Such artifacts happen with clusters and empty spaces, as
in the application to the Delhi data. The STHM provides a natural way to “fill-in” the spatial domain D with
predictions at extra locations according to equation (12). Regarding the choice of extra locations, rather than
constructing an inefficient regular grid of points, we follow here Lindgren et al. [22] by using a constrained
Delaunay triangulation as implemented in the R package Integrated Nested Laplace Approximation [INLA; 30].
This triangulation method allows us to tessellate D with triangles such that their minimum interior angle is
maximized under the constraint that measured locations correspond to vertices. This (constrained) maximin
property ensures that the density of vertices somewhat follows the density of measured locations (i.e. more
smaller triangles where sensors are clustered) while maintaining an even spread in empty areas, including beyond
the convex hull of all measured locations. The predictions at these extra locations can be integrated within the
fitting of the model since they are equivalent to missing values in 𝒚 (locations where no observation is available).
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