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Abstract

Counterfactual Data Augmentation (CDA) is a commonly
used technique for improving robustness in natural language
classifiers. However, one fundamental challenge is how to effi-
ciently label such synthetic data, particularly when they are in
regions where the model is already not confident. Most meth-
ods either rely on human-annotated templates, an expensive
process which limits the scale of counterfactual data, or im-
plicitly assume label invariance, which may mislead the model
with incorrect labels. In this paper, we utilize counterfactual
generative models to generate a large number of diverse coun-
terfactuals that include multiple label changing and invariant
assumptions, and learn a classifier to automatically annotate
more counterfactuals. Our key insight is that we can more
effectively and efficiently annotate generated counterfactuals
by training a pairwise classifier that uses the original exam-
ple’s ground-truth label and compares the original example to
the counterfactual. We demonstrate that with a small amount
of human-annotated counterfactual data (e.g., 10%), we gen-
erate a counterfactual augmentation dataset which provides
an 18-20% improvement in robustness and a 14-21% reduc-
tion in errors on 3 out-of-domain datasets, comparable to that
of a fully human-annotated counterfactual dataset for both
sentiment classification and question paraphrase tasks.

1 Introduction
Counterfactual data augmentation (CDA) has been used to
make models robust to distribution shift and mitigate biases
towards spuriously correlated attributes. Often, counterfactu-
als are generated as labeled examples through pre-specified
templates (Dixon et al. 2018; Hall Maudslay et al. 2019) or
crowd-sourcing (Kaushik, Hovy, and Lipton 2020). While
natural text templates codify a specific number of assump-
tions of how counterfactual sentences and labels might vary,
crowd-sourcing which can cover various types of counterfac-
tuals, can be expensive. On the other hand, many existing
methods (Xu et al. 2018; Zhao, Dua, and Singh 2018; Jia et al.
2019; Alzantot et al. 2018) simply rely on a label-invariance
assumption: the label of the generated counterfactual exam-
ple and the corresponding clean data are the same. However,
this simple label-invariance assumption does not always hold
true (Tramer et al. 2020; Ng, Cho, and Ghassemi 2020) and
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thus greatly increases the risk of using incorrect labels for
counterfactual examples during training. For example, for
sentiment classification, given an input (e.g., This movie is
great), a counterfactual generator can create a small perturba-
tion to generate a counterfactual that maintains the original
label (e.g., This movie is exquisite), but in some cases a small
perturbation can also change the ground-truth label (e.g., This
movie was supposed to be great) (Kaushik, Hovy, and Lipton
2020). Therefore, “how can we automatically learn the labels
for counterfactual examples, given a diverse counterfactual
text generator?” remains a challenging research problem.

Beyond costly human annotation or simplifying assump-
tions of label invariance, researchers have explored how to
make use of a classifier f that has learnt to predict the label on
the original dataset (X,Y ). Such a classifier has been used
to directly label generated examples (our “trust” baseline;
(Kaushik, Hovy, and Lipton 2020)) or to weight generated
examples based on the model uncertainty (our weighted-trust
baseline; (Ovadia et al. 2019)). However, as the value of
counterfactual data augmentation is to improve training in
regions of lower accuracy, we will see that such approach has
more limited benefits.

In this paper we propose an alternative approach to this
problem: we leverage the sample efficiency of generative
models to generate a large number of diverse counterfactuals,
and train an auxiliary classifier which learn the difference
between the original and counterfactual labels to annotate
the generated counterfactual data. Specifically, we propose to
learn the patterns of how counterfactual labels vary by using
the pair of original and counterfactual sentences (x, cs(x))
and the original label y as input to our pairwise classifier h
and learn to predict the counterfactual label y′. The pipeline
of our method is shown in Figure 1. We should note that only
a very small set of human-annotated counterfactual examples
are used to train the pairwise counterfactual classifier. Then
in the inference stage, the pairwise counterfactual classifier
is used to predict the labels for a large set of counterfactual
examples. By using counterfactual generators and auxiliary
pairwise counterfactual classifiers, we can greatly reduce
the number of counterfactual examples for which we need
human annotation, while providing similar gains in robust-
ness ccomparable to a fully human annotated counterfactual
dataset.

Our proposed approach addresses some of the challenges



Counterfactual 
Generator (c)

Original 
Dataset: X, Y

x: “This movie is full of grace”
y: Positive Sentiment

x1’: “This movie is full of mistakes”
x2’: “This movie is full of finesse”

Human 
Annotations for 

Training

Pair-wise 
Counterfactual 

Classifier (h) Classifier
Inferred 

Counterfactual
Dataset: X’, Y’

y1’: Negative Sentiment
y2’: Positive Sentiment

((x,x’), y) y’

Figure 1: Overview of proposed approach: We propose a
Pairwise Counterfactual Classifier to label generated counter-
factuals (could be either label-invariant or label-modifying)
at scale. We use the labeled counterfactuals as data augmen-
tation and show it significantly improves robustness.

outlined in recent work like Checklists (Ribeiro et al. 2020)
in scaling the different types of counterfactual robustness de-
sired in models beyond accuracy. We also show that each one
of the counterfactual templates that the counterfactual gen-
erator produces contribute to a different type of robustness
not previously captured by our model, and hence further em-
phasizes the need to diversify the type of counterfactuals and
generalize our performance against them for natural language
classifiers. Our core contributions in this work include:

• We propose a novel pairwise counterfactual classifier that
labels counterfactually generated examples at scale based
on a small set of annotated counterfactuals, improving
sample efficiency of counterfactual data augmentation.
• We model both label-invariant and label-modifying coun-

terfactuals for the sentiment classification task on Stan-
ford Sentiment Treebank (SST-2) dataset, and the question
paraphrase task on Quora Question Pair (QQP) dataset,
and show robustness improvements using just 10% of
human-annotated labels.
• The generated augmented dataset when used for fine-

tuning produces an improvement in counterfactual robust-
ness of 18-20%, comparable to a fully human annotated
dataset, and a reduction in errors by 14-21% on IMDB,
Amazon and Yelp reviews out-of-domain datasets.

2 Related Work
Our work is built on advances from various domains as out-
lined below:

Adversarial Text Generation Training against adversar-
ial examples which perturb inputs in the vicinity of the exist-
ing training data by making geometric assumptions (Ng, Cho,
and Ghassemi 2020; Zeng et al. 2021) on a lower dimension-
ality of the data to improve robustness has been extensively
studied recently. Natural examples which are syntactically

and semantically similar to the original sentence, but produce
different model predictions have been produced (Alzantot
et al. 2018). Similarly, defenses against adversarial attacks on
self-attentive models have shown improvement in robustness
to label invariant examples (Hsieh et al. 2019). In FairGAN
(Xu et al. 2018), they showed it is possible for a discrimi-
nator to achieve statistical parity on the real dataset, while
performing the auxiliary task of detecting real and generated
examples. Such controlled adversarial generative approaches
(Wang et al. 2020) have demonstrated the effectiveness of
automating data augmentation in text-based tasks. Genera-
tive models which optimize for fluency have passed human
annotation checks where the model generated text is almost
indistinguishable from human generated ones (Madaan et al.
2020; Ross, Marasovic, and Peters 2020). We build on this
body of work and utilize a generative model (Wu et al. 2021)
that captures template-based counterfactuals to improve ro-
bustness. Through carefully disentangling specific attributes
and the rest of the latent variables in text, we generate counter-
factuals across all possibilities, and utilize human-annotated
templates to label a small fraction of the generated examples
to train a pairwise counterfactual classifier.

Semi-Supervised Learning Labeling functions which
provide crude estimates of the label have been used in semi-
supervised methods (Ratner et al. 2017), and are further used
to learn a generative model to generalize over them. Further,
utilizing unlabeled data (Carmon et al. 2019) to improve ad-
versarial robustness leverages geometric smoothing-based
techniques to bridge the sample complexity gap between
accuracy and robustness (Yang et al. 2020). Thus, semi-
supervised learning approaches aim to generate examples
where the discriminator is least confident about (Ovadia et al.
2019). Language models with very large number of param-
eters have also shown to be few-shot learners with minimal
supervision (Brown et al. 2020). Similarly, reinforcement
learning based approaches with minimal labels have been
proposed to combine the objectives of accuracy and coun-
terfactual robustness (Pitis, Creager, and Garg 2020). In this
spirit of efficiently capturing the patterns already prevalent
in the original dataset, and learning only the new ones intro-
duced in the counterfactual templates, we learn the pairwise
counterfactual classifier on a small number of samples, and
use it to capture the label variations in the remaining counter-
factual dataset.

Counterfactual Applications The counterfactual datasets
we use throughout this paper were intended to highlight the
shortcomings of existing models at the time. Improving ro-
bustness through training on the augmented data has been
extensively explored (Garg et al. 2019; Wu et al. 2018). Learn-
ing how counterfactuals differ have been explored by compar-
ing against gradient supervision (Teney, Abbasnedjad, and
van den Hengel 2020) and the generalizability between origi-
nal and counterfactuals (Kaushik, Hovy, and Lipton 2020).
The generated counterfactuals have also been used for expla-
nations (Verma, Dickerson, and Hines 2020), highlighting
biases (Dixon et al. 2018) and debiasing through statistical
methods (Lu et al. 2019). This rich set of contrast sets (Gard-
ner et al. 2020), checklists (Ribeiro et al. 2020), paraphrases
(Zhang, Baldridge, and He 2019; Wieting and Gimpel 2018),



adversarial schemes (Sakaguchi et al. 2019) and lexical diag-
nostic datasets (McCoy, Pavlick, and Linzen 2019) form the
foundation of our method, which re-purposes them to build a
counterfactual generative model and improve counterfactual
robustness.

3 Methodology
Our Problem Framing
Let x, y be the input sentence and its associated label in
the original dataset, respectively. We assume y ∈ {0, 1}
throughout the paper (i.e., we focus on binary classification
tasks), but our framework can be extended to multi-class
tasks as well.

Our core challenge is what is the true label y′ for a gen-
erated counterfactual x′? While we can can further obtain
human annotations, this can quickly become time consuming
and budget intensive to do at scale. If we make the simplified
assumption of label invariance throughout the counterfactual
inputs x′ generated, which is a common assumption in adver-
sarial literature (Goodfellow, Shlens, and Szegedy 2015; Jia
et al. 2019; Alzantot et al. 2018), we could end up with an
incorrect counterfactual dataset which might hurt robustness
and accuracy. Our goal is thus, to generate a counterfactual
augmentation dataset that produces a comparable improve-
ment in accuracy and robustness as that of human-annotated
counterfactuals with minimal supervision.

We frame this problem as how to learn when the labels
flip, i.e., identifying when the label of the counterfactual
is different from the label of the original sentence: P (y 6=
y′) = δ, (0 < δ < 1), in the counterfactual distribution
x′ ∈ X ′. Given a generation model c, we denote cs(x) as
the generated counterfactual over x by changing an attribute
s in x. Since the counterfactual cs(x) can either contribute
to a label flip or not, it is important for us to understand the
patterns in the counterfactuals that vary the labels. We further
assume that a classifier f : X → Y has been learnt on the
original dataset (X,Y ) by optimizing for accuracy A.

A =E(x,y)∈(X,Y )I(f(x) = y) (1)

In our paper, the objective is to use the counterfactual data
to train a model f ′ that improves robustness, i.e., to make
sure the models we trained generalize to unseen scenarios.
We measure this by the counterfactual accuracy Ã of f on a
held-out counterfactual dataset (X ′, Y ′):

Ã =E(x′,y′)∈(X′,Y ′)I(f ′(x′) = y′) (2)

To achieve this goal, we generate our training counter-
factual inputs cs(x) ∈ X ′

t (here the subscript t denotes the
training set) that modifies original input x ∈ X based on the
attribute s. In natural language tasks, the attribute s cannot
be directly inferred from the sentence x and hence we rely on
templates to define the types of counterfactual (e.g., negation,
insertion, deletion) as commonly used in (Ribeiro et al. 2020;
Wu et al. 2021) to infer the attribute s. Let y ∈ Y, y′ ∈ Y ′

t
be the label for the original and counterfactual sentences in
our counterfactual training dataset. The training objective of
robustness is to minimize the error Et of the model f aggre-
gated by attribute s on the training counterfactuals (X ′

t, Y
′
t ),

where CE refers to the cross-entropy loss, as follows:

Ẽt(s) = Ex∈X,(cs(x),y′)∈(X′
t,Y

′
t )
CE(f(cs(x)), y

′) (3)

Ẽt = Es∈S Ẽt(s) (4)

Since y′ is not readily available for counterfactual gener-
ated sentences cs(x) in our training dataset and gathering
them for all examples can be expensive, our goal is to min-
imize the number of human-annotations of counterfactuals
y′ in the training dataset Y ′

t , while achieving comparable
improvement in robustness (Eqn 2). Hence, the training sen-
tence and label set (X ′

t, Y
′
t ) can be decomposed into two

sets, one whose labels are human-annotated: (X ′
a, Y

′
a) and

the other with model generated labels: (X ′
g, Y

′
g), such that

X ′
t = X ′

a ∪ X ′
g, Y

′
t = Y ′

a ∪ Y ′
g . Our goal is to automati-

cally learn the labels for counterfactual examples X ′
g with

an access to a limited human-annotated counterfactual data
(X ′

a, Y
′
a), where |Y ′

a| � |Y ′
g |, while achievable counterfac-

tual robustness Ã (Eqn 2) comparable to the scenario when
all the training labels are human-annotated.

Pairwise-Counterfactual (PC)
In order to generate labels for the counterfactuals, we con-
struct a novel auxiliary pairwise classifier h, which takes
in as input both the original dataset (x, y) ∈ (X,Y ), and
a corresponding counterfactual cs(x) ∈ X ′

t and the human-
annotated labels y′ ∈ Y ′

a. The classifier h is trained on pairs
of input sentences x, cs(x) and the original label y to predict
y′ ∈ Y ′

a.
Specifically, the classifier h takes in the original input

sentence x and its associated label y, as well as its corre-
sponding counterfactual example cs(x). The output of the
classifier h(x, cs(x), y) is the predicted label of the counter-
factual example cs(x). In the training stage, the classifier
h is optimized on the counterfactual examples with human-
annotated labels (cs(x), y′) ∈ (X ′

a, Y
′
a) via minimizing the

loss function:

`h = E(x,y)∈(X,Y ),(cs(x),y′)∈(X′
a,Y

′
a)
CE(h(x, cs(x), y), y

′)
(5)

With the well-trained classifier h, we can generate the
labels for any counterfactual example cs(x) ∈ X ′

g (the coun-
terfactual set without human annotation) according to:

y′ = h(x, cs(x), y) : (x, y) ∈ (X,Y ), cs(x) ∈ X ′
g (6)

Classifier-Aware Pairwise-Counterfactual (CAPC)
Additionally, since we know that f is already optimized to
predict the label accurately on the original dataset, the auxil-
iary classifier h could potentially leverage f in its pairwise
prediction through transfer learning. Specifically, if we de-
compose the counterfactual distribution (X ′, Y ′) as a mixture
of samples from the original distribution (X,Y ) and those
that are independent of the original distribution, we would
benefit by training h to identify samples from the latter dis-
tribution. In addition, assuming the correspondence between
f(x) and f(cs(x)) is easier to learn (e.g., with a lower model
complexity), we could also benefit from learning a classifier-
aware function to better capture this correspondence. Thus,



we propose to augment the predictions of the original classi-
fier f(x), f(cs(x)) as input to h as follows:

y′ ∈ Y ′
g = h(x, cs(x), y, f(x), f(cs(x))) : (7)

(x, y) ∈ (X,Y ), cs(x) ∈ X ′
g

Any uncertainty that f has on the counterfactual samples
P (f(cs(x)) 6= y′) can be mitigated by the auxiliary classifier
h by identifying patterns in cs(x) when f predicts incorrectly.
As a simple example, without any human annotation, the orig-
inal model f might make incorrect assumptions on cs(x) that
lead to incorrect predictions f(cs(x)) 6= y′, e.g., a sentiment
analysis model might give “positive” sentiment predictions
due to the presence of qualifiers like “terrific”, “amazing”
(this movie was amazing) even when the counterfactual in-
put cs(x) alters aspects of a sentence that changes the label
(this movie was supposed to be amazing). But, this can be
corrected using Eqn 7 after h has observed some data over
the correct correlation between x, cs(x), y, f(x), f(cs(x))
and y′, especially if there exists a lower-complexity func-
tion mapping between them - for instance, adding the phrase
“supposed to be" may alter the label of a review.

This is similar to boosting (Freund and Schapire 1997)
related methods where the original classifier f ’s errors on
the counterfactuals is being learnt by the auxiliary classifier
h. This helps us understand why the pairwise counterfactual
classification task might be easier and perform better than
simply annotating the counterfactual example cs(x) using
the original classifier f . We can draw parallels to boosting
(Freund and Schapire 1997) and draw insights as to why the
number of samples required might be less. We now proceed
to how our methodology compares to baselines (including
using f for annotation) on held-out counterfactual robustness
and the impact it has on the original accuracy.

4 Evaluation
We evaluate on two NLP tasks, sentiment classification and
question paraphrase, using two datasets namely the Stan-
ford Sentiment Treebank (SST-2) (Socher et al. 2013) and
the Quora Question Pair (QQP) (Iyer, Dandekar, and Cser-
nai 2017; Wang et al. 2018). Below, we briefly explain the
problem set up in both datasets, how the counterfactuals
are generated in each and the corresponding counterfactual
datasets across which we evaluate counterfactual robustness.

Counterfactual Generator: Polyjuice
We use a general purpose counterfactual text generator called
Polyjuice (Wu et al. 2021), which extends CheckList (Ribeiro
et al. 2020), that has shown promise by improving diversity,
fluency and grammatical correctness as evaluated by user
studies. It covers a wide variety of commonly used counter-
factual types including patterns of negation (Kaushik, Hovy,
and Lipton 2020), adding or changing quantifiers (Gardner
et al. 2020), shuffle key phrases (Zhang, Baldridge, and He
2019), word or phrase swaps which do not alter POS tags
(Sakaguchi et al. 2019) or parse trees (Wieting and Gimpel
2018), along with insertions or deletion of constraints that do
not alter the parse tree (McCoy, Pavlick, and Linzen 2019).

Other text generative models like (Zhao, Dua, and Singh
2018; Kaushik, Hovy, and Lipton 2020; Jia et al. 2019) that
improve adversarial robustness or like (Keskar et al. 2019;
Dathathri et al. 2019) that allow controlled generation could
be used as well.

Tasks and Datasets
Stanford Sentiment Treebank: We use the sentiment
analysis dataset SST-2 (Socher et al. 2013) which as-
signs a binary sentiment (negative/positive) to a sentence
mined from RottenTomatoes movie reviews. The corre-
sponding counterfactuals are generated using the Polyjuice
generator (Wu et al. 2021). The original dataset con-
tained 4,000 samples, while the counterfactual dataset had
2,000 samples with human labels against which we eval-
uate. We show a sample of the dataset in the following:

Positive: A dog is embraced by the dog
Negative: A dog is not embraced by the dog

Quora Question Pair: In the QQP dataset (Iyer, Dan-
dekar, and Csernai 2017; Wang et al. 2018), given a
pair of questions, the task is to predict if they are se-
mantically equivalent, hence marked as duplicate. Here,
again the second question is modified by Polyjuice (Wu
et al. 2021) as per the templates used for the SST-2
dataset including negation, insertion, deletion, rephrasing,
etc, out of which 1,911 samples were human annotated
for evaluation. The original dataset had 20,000 samples.

Duplicate: How can I help a friend experiencing serious de-
pression?; How can I help a friend who is in depression?
Non-duplicate: How can I help a friend experiencing seri-
ous depression?; How can I play with a friend who is in
depression?

Baselines
We now briefly describe five different baselines used to gen-
erate the labels of counterfactual augmented data (Y ′

g ), given
access to a small number of annotated labels Y ′

a.
• no-cda: f without any counterfactual data used for robust-

ness.
• label-invariant (invariant) : the labels of the counterfac-

tual examples are assumed to be the same as the corre-
sponding original sentence: y′ = y.
• trust: we trust the classifier f to annotate the counterfac-

tual labels y′ = f(cs(x)).
• weighted-trust (w-trust): the label of the counterfactual

example is computed via the maximum score weighted
by the confidence score of the classifier f on the pair for a
label l : pl(x) such that y′ = argmaxl pl(x) · pl(cs(x)).
• random: In order to understand the importance of the

counterfactual sentences used in the pairwise classifier, we
also evaluate against a classifier which takes two randomly
paired sentences as input and predicts the second label
given the label of one sentence.
• training: we only use those counterfactual examples with

human-annotated labels (X ′
a, Y

′
a) and drop all other coun-

terfactual examples.



For all these baselines as well as our proposed methods,
we use the RoBERTa (Liu et al. 2019) fine-tuned model
as the choice of classifier f , and a corresponding pairwise
fine-tuning task using RoBERTa 1 for the auxiliary pairwise
counterfactual classifier h.

Experiment Setup
In both datasets, we have a small number of counterfactual
human annotations available (SST-2: 2,000; QQP: 1,911)
(Wu et al. 2021). We divide these examples into two sets, one
for training and annotating using h, and another held-out test
dataset used to compute counterfactual robustness of f . The
former dataset is used for fine-tuning f for counterfactual
robustness, while the latter is used only as a held-out test set.
In the SST-2 dataset, this means we split out 1,000 samples
for training/annotation and 1,000 as the test set, while in the
QQP dataset, we use 1,000 samples for training/annotation
and the remaining 911 samples for testing counterfactual
robustness.

The classifier f is first trained on the original classifier
and then fine-tuned on the counterfactual dataset. We also
perform 10 random initializations of the model f and h and
a 10-fold cross-validation split on the training/annotation
data, thus report the mean and standard error bounds σ/

√
n

over n = 1000 runs for each model-based annotation and
training for counterfactual robustness. We used the standard
hyperparameters provided1 for training f on (X,Y ) and
the hyperparameters for fine-tuning f on (X ′

t, Y
′
t ) include

learning rate of 5e − 5, batch size of 16 and a sequence
length of 120 for 20 epochs. The pairwise counterfactual
classifier’s hyperparameters were chosen after a grid search
to have a learning rate of 5e − 4, batch size of 32 for 50
epochs, sequence length of 240 including the original label
and classifier predictions with special marker characters.

To test the methodology on out-of-domain datasets, we
test on sentiment analysis tasks in 3 class-balanced reviews
datasets - IMDB movie reviews, Amazon reviews, and Yelp
reviews (Kaushik et al. 2021). The IMDB reviews (1,700)
were collected by (Kaushik, Hovy, and Lipton 2020) through
careful human elicitation to produce label varying counterfac-
tuals of existing IMDB reviews. In the Yelp reviews (Asghar
2016), the task is to predict the ratings of 115,907 reviews
on a scale of 1-5, and in the Amazon reviews (Ni, Li, and
McAuley 2019), we evaluate on the 57,947 reviews in the
clothing product category. Each one of these datasets were
not used for training either the base classifier or the pairwise
classifier, and the training relies solely on the SST-2 dataset.
So, we can measure the generalizability of the pairwise clas-
sifier based data augmentation methodology.

5 Results
Improving Counterfactual Robustness
To demonstrate the effectiveness of our proposed methods:
pairwise-counterfactual (PC) and classifier-aware pairwise-
counterfactual (CAPC), we perform counterfactual data aug-

1huggingface.co/roberta-large-mnli, textattack/roberta-base-
SST-2, ji-xin/roberta_base-QQP-two_stage

mentation using 10% counterfactual examples with human-
annotated labels as well as 90% counterfactual examples (a
total of 1,000 samples), whose labels are predicted using
each method. The error rate on the hold-out counterfactual
examples (referred as robustness) as well as on the original
test set are shown in Figure 2.
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Figure 2: (a) Robustness: (first row) Training on 10% of
human-annotated counterfactuals, and annotating the rest
using the auxiliary classifier, we achieve a comparable im-
provement in robustness (lower error rate) for both Stanford
Sentiment and Quora Question Pair datasets; (b) Accuracy:
This improvement in robustness does not sacrifice the accu-
racy on the original held-out dataset.

We can clearly see that (1) the error rate of our proposed
methods: PC and CAPC both significantly outperform other
five baselines on models’ robustness. (2) Comparing PC and
CAPC, we can see that CAPC performs slightly better than
PC. This indicates that the prediction of the original classifier
f(x), f(cs(x)) does provide additional information to help
with labels prediction. (3) In addition, we also compare our
methods with the extreme case that all the counterfactual
examples (100%) are provided human-annotated labels, de-
noted as (human-labels). Surprisingly, our methods, which
only use 10% human-annotated labels and predict the labels
for the other 90% counterfactual data, achieve comparable
performance in improving models’ robustness. This suffi-
ciently supports that our proposed methods can effectively
predict the labels for counterfactual examples. (4) Looking at
the error rate on the hold-out original test set, all the methods
share a similar performance on SST-2 and our methods are
better than other baselines and comparable to human-labels
on QQP.

How much human-annotated data do we need?
To understand the impact of the training data provided to the
auxiliary classifier h, we increased the % of data Y ′

a provided
to the classifier. While this increases costs of annotation, it
is important to understand the headroom improvement in
counterfactual robustness one would get had they opted for
complete human-annotation. Figure 3 shows that across both
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Figure 3: Impact of training size: As the number of samples
|Y ′

a| increases more than 10%, there is not much headroom in
counterfactual accuracy, and does not significantly impact the
accuracy on the held-out original test dataset on both SST-2
and QQP datasets (overlapping error bounds).

datasets, the improvement in accuracy and robustness in pro-
viding more human annotations to train h : CAPC and subse-
quently training the model f : RoBERTa-{SST-2, QQP} is
not significant and hence further demonstrates that, with just
10% of the augmentation dataset, we can already achieve an
improvement comparable to a fully human annotated dataset.
This further confirms our method can achieve high sample
efficiency in improving models’ robustness.

Generalization across Counterfactual Types
We evaluate the generalization of our pairwise counterfactual
classifier h by ablating one counterfactual type (e.g nega-
tion, quantifier, etc) at a time during training, but including
those examples at annotation time. The results are shown
in Figure 4. We see that our approach outperforms existing
baselines on counterfactual robustness. This further indicates
the importance of learning a counterfactual classifier which
captures patterns of label invariance that generalizes across
counterfactual templates. Finally, we evaluate if our gener-
ated augmentation dataset can be used to improve unseen
counterfactual types. While this is not the goal of our pa-
per, it is useful to understand what types of counterfactuals
are captured by our generator and if any overlap between
the types of counterfactuals is leveraged. Table 1 shows that
our approach is comparable with baselines across all coun-
terfactual types. This is consistent with existing work (Jha,
Lovering, and Pavlick 2020) and further highlights the need
to incorporate diverse types of counterfactuals to perform
data augmentation.

Checklist Evaluation
To further validate that the generated labels by our auxiliary
model can be used for other tasks, we evaluate it against the
labels in CheckList (Ribeiro et al. 2020) which capture other
types of counterfactuals. We measure the Absolute Failure
Gap: |ε − εa| computed as the difference between the true

error rate ε and the error rate as reported by using our aug-
mented dataset εa while evaluating the models and tasks in
the CheckList dataset. In Figure 4, we see that even when
the training data provided to the auxiliary classifier is syn-
thetically made explicitly label-invariant (90%), evaluating
against counterfactuals with minimal label-invariance (10%),
our model generalizes with a lower failure gap than other
augmentation approaches. However, on the original Check-
list dataset there is no significant improvement in failure gap
compared to reporting the failure gap just on the training data
alone.
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Figure 4: (a) Out-of-distribution data generalization: Our
methods generalize well over different label-invariant dis-
tributions with 90% counterfactual label flips (y 6= y′) in
the Checklist dataset even when the training distribution has
only 10% counterfactual label flips; (b) Model Comparison:
However, on the original Checklist dataset (Ribeiro et al.
2020), we achieve a comparable failure gap with the golden
error rate to other model-based annotations

Out-of-Domain Reviews
To validate that the counterfactuals we augment through our
pairwise classifier’s annotations has generalizability to out-
of-domain datasets, we evaluate the reduction in error rates of
the base RoBERTa model when they are trained on the pair-
wise classifier’s data augmentation in Table 2. In the IMDB
reviews dataset, we see an improvement in error rates from
9.2% without data augmentation to 7.2% through CAPC.
This out-of-domain error rate is comparable to the error rate
obtained by the model trained by (Kaushik, Hovy, and Lip-
ton 2020) after incorporating samples from the counterfactu-
als drawn from the same distribution as part of the training
(6.7%). In the Yelp reviews too, we see a reduction from
15.7% to 13.1% whereas other baseline approaches lead to
an increase in error rates. Finally, in the Amazon reviews,
the CAPC approach (17.2%) outperforms the baselines and
is comparable to the augmentation from the training split
from the Amazon reviews (16.7%). Each of these improve-
ments have to be viewed with the context that it was achieved
in a more sample efficient manner (1,000 counterfactuals



Sliced Error when Counterfactual Type is Ablated %

Model negation quantifier lexical resemantic insert delete restructure shuffle
CAPC-no-ablation 3.20 2.01 1.94 2.00 2.10 2.45 3.32 4.03

Generalization when counterfactual type is ablated from training h

invariant 14.62 4.82 4.32 3.10 7.72 7.83 6.48 9.24
trust 12.96 4.15 4.73 3.00 4.95 12.49 3.74 9.02
w-trust 5.09 3.55 8.91 10.60 7.72 5.57 10.51 10.60
random 4.74 4.04 6.92 2.22 7.42 5.55 5.72 4.96
CAPC 4.04 2.20 4.76 2.10 4.56 4.67 3.56 4.50
PC 4.50 5.35 2.73 3.20 2.12 2.13 5.30 5.10

Generalization when counterfactual type is ablated from training h and f

CAPC 11.17 13.02 7.55 13.33 4.98 5.76 10.77 9.01
PC 7.02 7.40 4.63 5.35 2.42 2.54 6.85 9.34

Table 1: Generalization of Counterfactual Types: Increase in error rates (%) of different counterfactual sentence types shows
that our approaches CAPC and PC generalize better when those types are held out during training h. However, when we ablate
the counterfactual type both while training f and h, our approaches perform comparably to the baselines. This shows that h does
not just memorize the templates, but training on diverse counterfactual types is important for robustness

Test error rate %
Model IMDB Yelp Amazon

no-CDA 9.2 15.7 20.0
invariant 11.3 15.9 21.5

trust 9.3 15.8 20.5
w-trust 9.2 15.5 20.2
random 10.4 16.3 23.8
CAPC 7.2 13.1 17.2

PC 8.0 14.3 18.1

domain-trained 6.7 13.0 16.7

Table 2: Out-of-domain reviews: Using data augmentation
with SST-2 counterfactuals from the Polyjuice generator
and classified using CAPC performs comparable to a model
trained on within-domain data.

generated from the original SST-2 dataset by Polyjuice) as
compared to the in-distribution training approach, where the
training data has 3,400 samples from their own respective
datasets. This further confirms that training on augmented
counterfactuals using a generator and pairwise classifier ap-
proach is comparable to human-annotated samples from other
domains, while providing us the ability to scale both in terms
of domain generalization as well as labeling efficiency.

Discussion
The need to ensure that natural language models predict reli-
ably when sentences are perturbed in specific syntactic and
semantically meaningful ways, beyond the observed training
dataset is well established. Even though a checklist based
framework introduces many constraints at once, it is impor-
tant to ensure that enforcing one does not counter another
counterfactual behavior. We now discuss how future work can
build on top of our framework to overcome these limitations.

Importance of diverse templates While we show gen-
eralization across label variance in templates, we cannot
guarantee that by learning solely on label invariant coun-
terfactuals, our classifier can generalize over label modifying
counterfactuals. Here, it is important to analyze counterfac-
tual generators as to what type of sentences they generate and
how it might be relevant to downstream tasks. While genera-
tors like Polyjuice (Wu et al. 2021) have been evaluated for
fluency, diversity, etc., there is a need to evaluate them within
the context of a task and its labels.

We improve what we measure We acknowledge that the
set of counterfactuals we improved robustness over is limited.
We are not claiming to have automated improving robustness
of natural language classifier. Instead, our analysis further
indicates the need for more diverse counterfactual types that
require a case-by-case contextual understanding. We show
that adding more counterfactual types can be done in a sample
efficient manner by using a generator trained to produce
counterfactuals and a classifier which labels them by training
on a small set of human annotations.

6 Conclusion

Counterfactual Data Augmentation approaches have been
extensively used to train for counterfactual robustness. As
the types of counterfactuals - both label-invariant and label-
modifying, over which to evaluate natural language models
increase, there is a need to adopt a methodology that can
scale with increasing types of counterfactuals. We overcome
a significant challenge in doing so, by learning an auxiliary
pairwise counterfactual classifier that leverages the patterns
of counterfactuals produced by vairous generative models.
Using only a small amount of human annotated counterfac-
tual samples, we demonstrate that our method can produce a
dataset that improves counterfactual robustness comparable
to that of a fully human-annotated dataset.
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