
The need for transparent demographic group
trade-offs in Credit Risk and Income

Classification

Ananth Balashankar ?1,2 and Alyssa Lees1

1Google AI, New York
2New York University

Abstract. Prevalent methodology towards constructing fair machine
learning (ML) systems, is to enforce a strict equality metric for de-
mographic groups based on protected attributes like race and gender.
While definitions of fairness in philosophy are varied, mitigating bias
in ML classifiers often relies on demographic parity-based constraints
across sub-populations. However, enforcing such constraints blindly can
lead to undesirable trade-offs between group-level accuracy if groups pos-
sess different underlying sampled population metrics, an occurrence that
is surprisingly common in real-world applications like credit risk and
income classification. Similarly, attempts to relax hard constraints may
lead to unintentional degradation in classification performance, without
benefit to any demographic group. In these increasingly likely scenar-
ios, we make the case for transparent human intervention in making the
trade-offs between the accuracies of demographic groups. We propose
that transparency in trade-offs between demographic groups should be
a key tenet of ML design and implementation. Our evaluation demon-
strates that a transparent human-in-the-loop trade-off technique based
on the Pareto principle increases both overall and group-level accuracy
by 9.5% and 9.6% respectively, in two commonly explored UCI datasets
for credit risk and income classification.

1 Introduction

In recent discussions of ethical ML algorithms, evaluating fairness has been fre-
quently predicated on defining constraints based on specific protected attributes,
such as race or gender [1, 2]. These attributes should not demonstrate condition-
ally discriminative behavior while learning classification targets. If care is not
taken in the construction of an ML model, works such as [3] and [4] have shown
that inequalities in underlying data distributions can be amplified in the pre-
dicted output, leading to runaway feedback loops. Recent works [5] have argued
that examining the intersectionality of multiple protected attributes is crucial
for establishing coherent standards of fairness. However, real-world data sub-
populations often display varying underlying sampling distributions, bias and
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noise. We argue that principles towards fair ML should encourage transparency
in the trade-offs between demographic group accuracy in a classification task
and at a minimum be able to reflect their true underlying population distribu-
tions. At a fixed sample size, as the number of protected attributes increases, the
intersectional subgroup populations tend to decrease in size. In these scenarios,
it is evident that any classifier which does not perform worse on all groups can
never be fair [6]. To overcome this downside, we look to the rich literature of
“individual fairness” which defines fairness with respect to a similarity metric be-
tween two individuals and enforces that similar individuals are treated similarly,
within an error bound [7, 8, 5]. We find this definition to be useful in allowing
us to continue to ensure that minority demographic group populations perform
at their best accuracy while ensuring that majority demographic groups do not
suffer a large decrease in group-level accuracy.

Using this transparent Pareto-principle of Efficiency [9], popular in social
welfare and economics, we argue that trade-offs between demographic group
accuracy undertaken by ML algorithms in high-stakes applications like credit
risk and income classification [10] should be made transparent in order to be
examined against socio-technical norms in that application domain [11–13]. We
have been motivated by the insight that many fairness problems in existing
classification tasks for specific subpopulations can be remedied by controlled
data collection, subject to ethical considerations [14, 15]. As such, we suggest
that in the spirit of achieving fair outcomes, when learning on datasets with
varying demographic group sample sizes, how we weigh the loss suffered by each
demographic group can be a critical choice and should be transparent.

In the domain of credit risk assessment, the trade-off between the accuracy
of demographic groups has implications on financial justice across demographic
groups. For example, older married male individuals have better accuracy than
younger single female individuals for credit risk assessment. This means that even
a seemingly group-blind ML algorithm can have significantly different accuracy
across demographic groups. Similarly, in the income classification task, Cau-
casian male individuals have much better baseline accuracy than non-Caucasian
female individuals in the United States. Therefore, to build transparent and fair
ML systems, we show that the trade-offs between these demographic groups can-
not be avoided, but rather should be an integral part of the transparent design
of any socio-technical ML system. We illustrate one such transparent trade-off
mechanism by arguing for efficiency based on the Pareto principle, where degra-
dation in the accuracy of one group should not occur without improving another
group’s accuracy. In this paper, we compare our transparent Pareto-principle
based trade-off with several other strict equality-based constraints and demon-
strate an increase in 9.5% and 9.6% overall and group-level accuracy respectively
on both the credit risk and income classification tasks.
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2 Motivation: Trade-offs in the real world

COMPAS A ML model (COMPAS tool) was used for determining the risk of
recidivism in Broward County, Florida, USA. ProPublica [16] found in an in-
dependent investigation involving 18,610 people over 2 years that black males
were twice as likely to be misclassified by the model as high risk as compared
to white males. This scenario highlights the critical need for auditing existing
decision-making systems (including the ones based on human experts) and un-
derstanding the trade-offs made in their design. In such a high stakes scenario,
ideally, a decision-making system that achieves the highest group level metrics
(such as accuracy) is required. By incorporating inductive biases based on racial
and social justice, one could hope to achieve the end objective of improving the
Pareto front transparently. If we do not attempt to evaluate and discover Pareto
efficient classifiers, a domain expert choosing a classifier might end up making
trade-offs of accuracy and fairness among inefficient classifiers.

Gender Shades Certain image recognition models were discovered to have
lower accuracy for one particular group (darker females) than other groups in
the Gender Shades project [17]. The intervention undertaken to resolve this dis-
crepancy involved collecting better data for the poor performing group (females
with darker skin tone). The progress from such interventions amounts to discov-
ering better group accuracies on the Pareto frontier, as opposed to restricting
the models to strict equality among groups. Here too, the authors of the project,
Buolamwini and Gebru, advocate for a complete ban of ML models for facial
recognition tasks since these models are not advanced enough to perform with
high accuracy on all groups independent of skin tone and gender, without en-
coding spurious correlations. Hence, a ML model needs to be transparent in the
trade-offs that it implicitly makes to gain socio-technical acceptance in the real
world.

3 Transparent Trade-offs

The Pareto frontier has been used to characterize the trade-offs between more
than one dimension in multiple objective learning [18, 19]. It characterizes solu-
tions such that no point on the Pareto curve dominates another point on all the
dimensions across which we measure an objective. Evaluating the Pareto curve
for any ML classifier can be critical in making transparent trade-offs between
demographic groups [20].

3.1 Pareto front in ML based models

In our analysis of the German Credit and Adult Census Datasets, we take an
example of a feedforward neural network model with up to 3 layers with each
layer containing 256, 128 and 64 hidden units respectively. We then perform
a sweep of the hyperparameters by varying the depth of the neural network,
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learning rates and L1 and L2 regularization parameters [21], and the training
data made available to train the network (specific demographic groups versus
the entire dataset). Each network was trained multiple times with randomized
seeds for initializing the parameters of the network. This gives us a wide range
of group-level accuracies along each of the demographic groups we slice the
accuracy of the model. We then constructed the Pareto front of these group-level
accuracies after varying the hyper-parameters, with each group corresponding to
a dimension of the Pareto front. Note that visualization of the Pareto front can
be tricky, given that in most real-world applications, the demographic groups are
more than three. Hence, we need a principled approach using which a domain
practitioner can argue about their choice of a specific classifier on the Pareto
front. In figure 1, we see that in simulated data with two demographic groups, a
domain expert can trade-off one group’s performance with another by choosing
different points on the Pareto front. Also, we can see that a trade-off is inevitable
unless we assume that the Pareto front exactly intersects with the hyperplane
where all demographic groups perform equally (x=y in case of two dimensions).
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Fig. 1: An illustration of a two group-setting plotting group-level accuracy and
its corresponding Pareto front (in blue) shows that demographic group trade-offs
are implicit and unavoidable in ML systems
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3.2 Pareto Trade-offs

Having established that a trade-off between group-level accuracy should be con-
ducted on the Pareto front, we now provide an example where such a trade-off
is transparent and based on a Pareto Efficient and fair principle. In this princi-
ple, a domain expert might choose a classifier where each group’s performance
sacrifices accuracy equally. For example, in the German Credit risk assessment
task, older male individuals can achieve their best accuracy of 91% among all
the points on the Pareto front, whereas younger female individuals can achieve
only 73%. In this case, the Pareto-based trade-off would advocate for a classifier
that achieves 89% and 71.4% on the two groups respectively, each of them about
2.2% below (Pareto Loss) their respective optimal choices on the Pareto front.
This choice is different than the one a domain expert would choose based on
the principle of strict equality or Demographic Parity [22] between the groups
(both groups at 73%, i.e. zero Parity Loss). We acknowledge that both of these
choices might be valid in different contexts based on the principles the corre-
sponding algorithmic decision-making system prescribes. But, the choice needs
to be transparent and cannot be masked behind the objective of minimizing over-
all classification error. This transparency allows people who apply for credit to
contend the trade-offs and the corresponding principles in automated decision-
making systems. Hence, with transparency, the people who were previously left
out of the decision-making systems’ design can be involved and provide them
the ability to appeal the trade-offs made by such ML models.

4 Evaluation

4.1 Baselines

We compare our transparent trade-off approach with optimization techniques
that use fairness constraints such as Equality Constraint [3], Adversarial [23],
and Min-Max fairness [24]. [3] aims to lower the sum of absolute discrepancy of
all group accuracy from the overall accuracy (Parity loss), while [23] adversar-
ially attempts to nudge the classifier such that it cannot predict the protected
attributes. [24] aims to maximize the accuracy of the least performing demo-
graphic group.

4.2 UCI Adult Dataset

The UCI Census Adult dataset focuses on the prediction of income as a binary
variable (> $50K,<= $50K) based on demographic information. Protected at-
tributes selected are gender and race and are denoted as binary categorical vari-
ables. We consider the 4 groups at the intersection of the protected attributes,
to overcome the limitations of group fairness as outlined in [25]. The dataset
has 48,842 instances out of which 20% is held out as test data, while the re-
maining is used for training and cross-validation. There are 14 attributes out of
which 6 are continuous and 8 variables are categorical. Table 1 shows the Pareto
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Fig. 2: Comparison for 2 UCI datasets showing that the pareto-based transpar-
ent trade-off achieves better overall accuracy than other fairness constrained
classifiers.

loss, i.e how much each group deviates from the pseudo-optimal of the respec-
tive group for the UCI Census Adult dataset. Based on the Pareto principle,
we were able to choose an optimal point on the Pareto front that ensured that
each of the demographic groups perform optimally. In our transparent trade-
off on the Pareto front, each of the groups has better individual accuracy than
the other approaches and thus better overall accuracy as shown in Fig 2. Fig 3
demonstrates that our approach arrives at a better classifier on all demographic
groups. Some groups even exceed the baseline accuracy (computed using the
average of all unconstrained optimization results) due to an extensive swap of
the hyperparameters and transparently choosing the Pareto optimal classifier.

4.3 UCI German Credit Dataset

The UCI German Credit risk assessment dataset involves predicting credit type
as a binary label (good or bad) from demographic information where the pro-
tected attributes selected are age, gender and personal status. Each of these
protected attributes is binarized and the intersection of these 3 attributes is
considered as the groups in our study. There are 1000 instances in the dataset
with a total of 20 categorical attributes. We hold out a random 20 % as test data
over which we present the results. The evaluation of this dataset is determined
by a cost matrix where the false positives are considered 5 times more costly
than a false negative. The final accuracy reported takes this into account. Sim-
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Fig. 3: Group accuracy comparison shows that we achieve Pareto dominating
group level accuracy for all groups in UCI Adult dataset.

Model FPR FNR Parity Loss Pareto Loss

Baseline (no bias loss) 0.253 0.747 0.199 0.016

Equality Constraint[3] 0.283 0.712 0.167 0.133
Adversarial [23] 0.224 0.769 0.226 0.077
Min-max [24] 0.202 0.773 0.218 0.075
Pareto Efficient 0.165 0.830 0.250 0.000

Table 1: Comparison of test losses in UCI Adult dataset. Our Pareto-based trade-
off has no difference as compared to the Pareto optimal group-accuracy, while
[3] minimizes Parity loss.
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ilar to the UCI Adult Dataset, in Figure 4, we see that choosing a point based
on our Pareto principle, we increase the group-level accuracies as compared to
the equality constraints [22], adversarial loss [23] and minimax [24] optimization
techniques. The 5 groups (out of the total 8) are shown in the UCI German
Credit Dataset, as the rest of the groups do not have enough samples (< 100).
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Fig. 4: Group accuracy comparison showing we achieve optimal group level accu-
racy for all groups in UCI German Credit dataset among constrained classifiers.

4.4 Sample Size Inconsistencies

The use of explicit demographic attributes in real-world scenarios is sometimes
a hard constraint. One example is legislation enforcing fairness around disparate
impact [26, 27]. In simplified examples, exploring the intersectionality of pro-
tected attributes may be appropriate. For example, in this paper, we explore
two gender and two race subgroups in the evaluation of the UCI Adult dataset,
which translates to four separate groups. It is conceivable that in a real-world
application, the intersection of gender and race subgroups could extend into
many different groups. As the intersectionality of groups grows, a group’s sam-
ple size will likely be insufficient. In the case of the UCI German credit risk
assessment dataset, the attribute - marriage status, with five possible values,
is treated as a protected attribute along with gender and age. However, in the
dataset, there were no samples containing both the attributes of young, female
and being married.
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Table 2: Comparison of sample complexity ranking for Probably Approximately
Metric Fairness with actual subgroup sizes of subgroups

# Group Complexity Rank Sample Size (Rank)

UCI Adult Dataset

1 Male/White 1 2,129 (1)
2 Male/Non-white 3 8,642 (3)
3 Female/White 4 2,616 (2)
4 Female/Non-white 2 19,174 (4)

UCI German Credit Dataset

1 Old/Male 3 50 (1)
2 Old/Female 4 310 (3)
3 Young/Male 2 548 (4)
4 Young/Female 1 92 (2)

Despite the impossibility results of achieving fairness in the extreme case of
subgroup sized one, there is still a need to highlight cases where simple (linear)
models are inadequately applied in datasets with complex underlying subgroup
distributions [16, 28]. The ability to transparently argue about the trade-offs
made in designing the required model along with the limitations of small sample
sizes for certain demographic groups will guide the choices made by practitioners
and ML researchers. Through our work, we see that even an ML model that
does not explicitly perform a trade-off between demographic groups has already
decided the trade-off implicitly.

Using the theory of sample complexity based on Rademacher complexity
[29, 30], if we assume all the hypotheses are linear, we can rank the hardness
of learning the target for each demographic group, and order them (Table 2 -
higher numbered rank has higher complexity values). In the UCI Adult Census
dataset, the ordering of the actual subgroup sample sizes (4 > 2 > 3 > 1) reveals
that new samples are needed to match the desired sample complexity ordering
(3 > 2 > 4 > 1). Specifically, more samples for subgroup 3 (Female/White) need
to be gathered than for subgroup 2 (Male/Non-white) to ensure the ordering
of actual sample sizes aligns with that of the sample complexities. Similarly, in
the German Credit Dataset, Table 2 shows disparity in the order of the actual
sample sizes (3 > 2 > 4 > 1) as compared to desired sample complexity (2 >
1 > 3 > 4). This implies that in the UCI German Credit dataset, more new
samples from group 2 (Old/Female) than from group 3 (Young/Male) should be
drawn for us to make a balanced and transparent choice while performing trade-
offs. Similarly, more samples from subgroup 1 (Old/Male) need to be collected
than from subgroup 4 (Young/Female) to remove any inversion in the ranking
of complexities and actual group sample sizes to ensure that the trade-offs are
not performed inefficiently due to insufficient sample sizes.
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5 Conclusion

We advocate for transparency in the demographic group accuracy trade-offs in
high-stakes real-world applications like credit risk and income classification tasks.
We demonstrate that transparency in how we balance group-level accuracies can
lead to better classifiers being explored on the Pareto front while improving
overall accuracy too by 9.5%. Further, we caveat that trade-offs on demographic
groups with smaller sample sizes should be taken into account and appropriate
data collection exercises should be conducted. We argue that for the development
of an ethical AI framework for policy and decision-makers, transparency in the
group-level accuracy trade-offs is critical. Future work to extend this analysis
to more complex ML models may provide principled standards for transparent
trade-offs between groups in other application domains along with mechanisms
to contest them.
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